精英家教网 > 初中数学 > 题目详情
3、已知,△ABC的三边分别为a,b,c,则下列条件不能判断△ABC是直角三角形的是(  )
分析:根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.
解答:解:A、设a=3x,则b=4x,c=7x,
∵(3x)2+(4x)2≠(7x)2
∴此三角形不是直角三角形,故本选项错误;
B、设a=5x,则b=12x,c=13x,
∵(5x)2+(12x)2≠(13x)2
∴此三角形是直角三角形,故本选项正确;
C、设∠A=x,则∠B=2x,c=3x,
∵∠A+∠B+∠C=180°,
∴x+2x+3x=180°,解得x=30°
∴∠C=3×30°=90°,
∴此三角形是直角三角形,故本选项正确;
D、∵(a+b)2-c2=2ab,
∴a2+b2=c2
∴此三角形是直角三角形,故本选项正确.
故选A.
点评:本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BCA=90°,CD是高,已知Rt△ABC的三边长都是整数且BD=113,求Rt△BCD与Rt△ACD的周长之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则co精英家教网sA=
AD
b

即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC的三边长分别为a,b,c,且a和b满足
a-3
+b2-4b+4=0

(1)求a、b的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC的三边长都是整数,而且都不超过1999,其中∠A=90°,BC+AB=2AC,则一共有
399
399
个这样的△ABC.

查看答案和解析>>

同步练习册答案