精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系中,ABC的三个顶点坐标分别为A(0,4),B(3,4),C(4,﹣1).

(1)试在平面直角坐标系中,画出ABC;

(2)直接写出ABC的面积_________

(3)若A1B1C1ABC关于x轴对称,直接写出A1、B1、C1的坐标___________________________________

(4)在x轴上找到一点P,使点P到点A、B两点的距离和最小;

【答案】(1)图略(2)7.5(3)A1(0,-4),B1(3,-4)C1(4,1) (4)做A’(0,-4)连接A’B与x轴交点即为点P

【解析】

(1)根据题意作出图形即可;

(2)根据三角形的面积公式即可得到结论;

(3)根据关于x轴对称的点的特点即可得到结果;

(4)连接A1Bx轴于P即可得到结论.

(1)如图所示ABC即为所求;

(2)SABC=×3×5=

(3)A1(0,-4),B1(3,-4),C1(4,1);

(4)连接A1Bx轴于P,点P即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数,是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了如图,作一个,以O为圆心任意长为半径画弧分别交OAOB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接小鹏通过观察和推理,得出结论:OP平分

你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.

已知:中,____________________________________

求证:OP平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面的例题:

例题:已知二次三项式x2-4x+m有一个因式是x+3,求另一个因式以及m的值.

解:设另一个因式为x+n,

x2-4x+m=(x+3)(x+n),

∴x2-4x+m=x2+(n+3)x+3n,

解得

∴另一个因式为x-7,m的值为-21.

问题:仿照以上方法解答下面的问题:

已知二次三项式2x2+3x-k有一个因式是2x-5,求另一个因式以及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用小立方体搭一个几何体,是它的主视图和俯视图如图.这样的几何体只有一种吗?它最少需要多少个立方块?最多需要多少个小立方块?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个包装纸盒的三视图(单位:cm)
(1)该包装纸盒的几何形状是什么?
(2)画出该纸盒的平面展开图.
(3)计算制作一个纸盒所需纸板的面积.(精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,AOB为等腰直角三角形,A44

1)求B点坐标;

2)如图2,若Cx正半轴上一动点,以AC为直角边作等腰直角ACDACD=90°,连接OD,求∠AOD的度数;

3)如图3,过点Ay轴的垂线交y轴于EFx轴负半轴上一点,GEF的延长线上,以EG为直角边作等腰RtEGH,过Ax轴垂线交EH于点M,连FM,等式AM=FM+OF是否成立?若成立,请说明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAB=ACCE平分ACBAB于点ECE=BC.

(1)A的度数;

(2)能否在AC边上找一点D并连接ED使AED≌△CEB?若能请作出你找的点并证明;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O和M分别为Rt△ABC的外心和内心,线段OM的长为

查看答案和解析>>

同步练习册答案