精英家教网 > 初中数学 > 题目详情

【题目】如图是一个包装纸盒的三视图(单位:cm)
(1)该包装纸盒的几何形状是什么?
(2)画出该纸盒的平面展开图.
(3)计算制作一个纸盒所需纸板的面积.(精确到个位)

【答案】解:(1)该包装纸盒的几何形状是直六棱柱;
(2)如图所示:

(3)由图可知:正六棱柱的侧面边长为5的正方形,上下底面是边长为5的正六边形,
侧面面积:6×5×5=150(cm2),
底面积:2×6××5×5=75
制作一个纸盒所需纸板的面积:150+75=75(2+)≈280(cm2).
【解析】(1)易得此几何体为六棱柱,
(2)利用(1)中所求得出该纸盒的平面展开图;
(3)根据表面积=2×六边形的面积+6×正方形的面积求出即可.
【考点精析】根据题目的已知条件,利用由三视图判断几何体的相关知识可以得到问题的答案,需要掌握在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,以BC为边作等边△BDC,连接AD.

(1)如图1,直接写出∠ADB的度数   

(2)如图2,作∠ABM=60°BM上截取BE,使BE=BA,连接CE,判断CEAD的数量关系,请补全图形,并加以证明;

(3)在(2)的条件下,连接DE,AE.若∠DEC=60°,DE=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一空间图形的三视图如下图所示,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的四分之一圆以及高为1的矩形;俯视图:半径为1的圆,求此图形的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,ABC的三个顶点坐标分别为A(0,4),B(3,4),C(4,﹣1).

(1)试在平面直角坐标系中,画出ABC;

(2)直接写出ABC的面积_________

(3)若A1B1C1ABC关于x轴对称,直接写出A1、B1、C1的坐标___________________________________

(4)在x轴上找到一点P,使点P到点A、B两点的距离和最小;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC, B=60°,D、E分别为AB、BC上的点,AE、CD交于点F.

(1)如图1,AE、CDABC的角平分线. ①求证: AFC=120°;②若AD=6,CE=4,求AC的长?

(2)如图2,若∠FAC=FCA=30°,求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1MAN=90°,射线AE在这个角的内部,点BC分别在∠MAN的边AMAN上,且AB=ACCFAE于点FBDAE于点D.求证:ABD≌△CAF

2)如图2,点BC分别在∠MAN的边AMAN上,点EF都在∠MAN内部的射线AD上,∠12分别是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求证:ABE≌△CAF

3)如图3,在ABC中,AB=ACABBC.点D在边BC上,CD=2BD,点EF在线段AD上,∠1=2=BAC.若ABC的面积为15,求ACFBDE的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为   ,点C的影子的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ABC=45°,点DBC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点BBFED的延长线于点F.

(1)依题意补全图形;

(2)当AE=BD时,用等式表示线段DEBF之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案