【题目】如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.
(1)依题意补全图形;
(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.
【答案】(1)见解析;(2)结论:DE=2BF.理由见解析.
【解析】
(1)根据题意画出图形即可;
(2)结论:DE=2BF.连接AD,设DE交AC于H.想办法证明△ADH≌△DBF即可解决问题;
解:(1)依题意补全图形如图所示:
(2)结论:DE=2BF.
理由:连接AD,设DE交AC于H.
∵点E、D关于AC对称,
∴AC垂直平分DE.
∴AE=AD.
∵AE=BD,∴AD=DB.
∴∠DAB=∠ABC=45°.
∴∠ADC=90°.
∴∠ADE+∠BDF=90°.
∵BF⊥ED,AC⊥ED,
∴∠F=∠AHD=90°.
∴∠DBF+∠BDF=90°.
∴∠DBF=∠ADH.
∴△ADH≌△DBF
∴DH=BF
又∵DH=EH,
∴DE=2BF.
科目:初中数学 来源: 题型:
【题目】如图是一个包装纸盒的三视图(单位:cm)
(1)该包装纸盒的几何形状是什么?
(2)画出该纸盒的平面展开图.
(3)计算制作一个纸盒所需纸板的面积.(精确到个位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.
(1)a等于多少km,AB两地的距离为多少km;
(2)求线段PM、MN所表示的y与x之间的函数表达式;
(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现场学习:
在一次数学兴趣小组活动中,老师和几个同学一起探讨:在an=b中,a,b,n三者关系.
同学甲:已知a,n,可以求b,是我们学过的乘方运算,其中b叫做a的n次方.如:(﹣2)3=﹣8,其中﹣8是﹣2的3次方.
同学乙:已知b,n,可以求a,是我们学过的开方运算,其中a叫做b的n次方根.如:(±2)2=4,其中±2 是4的二次方根(或平方根);(﹣3)3=﹣27,其中﹣3是﹣27的三次方根(或立方根).
老师:两位同学说的很好,那么请大家计算:
(1)81的四次方根等于 ;﹣32的五次方根等于 .
同学丙:老师,如果已知a和b,那么如何求n呢?又是一种什么运算呢?
老师:这个问题问的好,已知a,b,可以求n,它是一种新的运算,称为对数运算.
这种运算的定义是:若an=b(a>0,a≠1),n叫做以a为底b的对数,记作:n=logab.例如:23=8,3叫做 以2为底8的对数,记作3=log28.根据题意,请大家计算:
(2)log327= ; ()﹣2+﹣log4= .
随后,老师和同学们又一起探究出对数运算的一条性质:如果a>0,a≠1,M>0,N>0,那么logaMN=logaM+logaN.
(3)请你利用上述性质计算:log53+log5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F, , C△ABC=10cm且∠C=60°.求:
(1)⊙O的半径r;
(2)扇形OEF的面积(结果保留π);
(3)扇形OEF的周长(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点N为△ABC的内心,延长AN交BC于点D,交△ABC的外接圆于点E.
(1)求证:EB=EN=EC;
(2)求证:NE2=AEDE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有A、B、C三地,A地在B、C两地之间.甲、乙两辆汽车分别从B、C两地同时出发,沿这条公路匀速相向行驶,分别到达目的地C、B两地后停止行驶.甲、乙两车离A地的距离y1、y2(千米)与行驶时间x(时)的函数关系如图所示.
(1)求线段MN的函数表达式;
(2)求点P的坐标,并说明点P的实际意义;
(3)在图中补上乙车从A地行驶到B地的函数图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A、B、C、D、E、F分别藏在六张大纸牌的后面,如图,A、B、C、D、E、F所持的纸牌的前面分别写有六个算式:66;63+63;(63)3;(2×62)×(3×63);(22×32)3;(64)3÷62.游戏规定:所持算式的值相等的两个人是朋友.如果现在由同学A来找他的朋友,他可以找谁呢?说说你的看法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com