精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

【答案】
(1)证明:连接OC.

∵CD是⊙O的切线,

∴∠OCD=90°.

∴∠OCA+∠ACD=90°.

∵OA=OC,

∴∠OCA=∠OAC.

∵∠DAC=∠ACD,∠OCA+∠DAC=90°

∴∠0AC+∠CAD=90°.

∴∠OAD=90°.

∴AD是⊙O的切线.


(2)解:连接BG;

∵OC=6cm,EC=8cm,

∴在Rt△CEO中,OE= =10.

∴AE=OE+OA=16.

∵AF⊥ED,

∴∠AFE=∠OCE=90°,∠E=∠E.

∴Rt△AEF∽Rt△OEC.

即:

∴AF=9.6.

∵AB是⊙O的直径,

∴∠AGB=90°.

∴∠AGB=∠AFE.

∵∠BAG=∠EAF,

∴Rt△ABG∽Rt△AEF.

即:

∴AG=7.2.

∴GF=AF﹣AG=9.6﹣7.2=2.4(cm).


【解析】(1)连接OC.欲证AD是⊙O的切线,只需证明OA⊥AD即可;(2)连接BG.在Rt△CEO中利用勾股定理求得OE=10,从而求得AE=13;然后由相似三角形Rt△AEF∽Rt△OEC的对应边成比例求得AF=9.6,再利用圆周角定理证得Rt△ABG∽Rt△AEF,根据相似三角形的对应边成比例求得AG=7.2,所以GF=AF﹣AG=9.6﹣7.2=2.4.
【考点精析】根据题目的已知条件,利用勾股定理的概念和圆周角定理的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,O为对角线AC的中点,EF经过点O并与AB,CD分别相交于点E,F.

(1)求证:AE=CF;
(2)当EF⊥AC时,连接AF,CE,试判断四边形AFCE是怎样的四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人先后从公园大门出发,沿绿道向码头步行,乙先到码头并在原地等甲到达.图1是他们行走的路程y(m)与甲出发的时间x(min)之间的函数图象

(1)求线段AC对应的函数表达式;

(2)写出点B的坐标和它的实际意义;

(3)设d(m)表示甲、乙之间的距离,在图2中画出d与x之间的函数图象(标注必要数据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出________个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数,是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解市民获取新闻的最主要途径某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:

(1)这次接受调查的市民总人数是   ;请补全条形统计图;

(2)扇形统计图中,电视所对应的圆心角的度数是

(3)若该市约有90万人,请你估计其中将电脑和手机上网作为获取新闻的最主要途径的总人数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于 DE的长为半径作弧,两弧交于点C;第三部,作射线OC并连接CD,CE,下列结论不正确的是(
A.∠1=∠2
B.SOCE=SOCD
C.OD=CD
D.OC垂直平分DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

数学活动课上,老师出了一道作图问题:如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:

(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.

(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.

(3)两弧分别交于点P和点M

(4)连接PM,与直线l交于点Q,直线PQ即为所求.

老师表扬了小艾的作法是对的.

请回答:小艾这样作图的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个包装纸盒的三视图(单位:cm)
(1)该包装纸盒的几何形状是什么?
(2)画出该纸盒的平面展开图.
(3)计算制作一个纸盒所需纸板的面积.(精确到个位)

查看答案和解析>>

同步练习册答案