精英家教网 > 初中数学 > 题目详情

【题目】为了了解市民获取新闻的最主要途径某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:

(1)这次接受调查的市民总人数是   ;请补全条形统计图;

(2)扇形统计图中,电视所对应的圆心角的度数是

(3)若该市约有90万人,请你估计其中将电脑和手机上网作为获取新闻的最主要途径的总人数。

【答案】(1)1000;图形见解析. (2)540;(3) 59.4.

【解析】

(1)根据扇形统计图的比例和条形图的人数可求出总人数,和从报纸获取新闻的人数再补全条形图即可。

(2)先计算出“电视”所占比例,然后再乘以整个圆心角的度数即可算出

(3)先计算出将“电脑和手机上网”作为“获取新闻的最主要途径”的比例之和,再乘以总人数即可得

解:(1)1000

(2)54°

(3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2

若L1⊥L2,则有k1k2=﹣1,根据以上结论解答下列各题:

(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值;

(2)若一条直线经过A(2,3),且与y=﹣x+3垂直,求这条直线所对应的一次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.
(1)求证:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出如下问题:

已知:如图,△ABC及AC边的中点O。

求作:平行四边形ABCD。

小敏的作法如下:

①连接BO并延长,在延长线上截取OD=BO;

②连接DA,DC.

所以四边形ABCD就是所求作的平行四边形.

老师说:“小敏的作法正确.”

请回答:小敏的作法正确的理由是_________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线l1l2相交于点O,且∠1+∠3=2(∠2+∠4),求下列角的度数.(1)∠2+∠4;(2)∠1,∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2=50°,EFDB

(1)DGAB平行吗?请说明理由.

(2)EC平分∠FED,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,
(1)如图1,
①线段CD和BE的数量关系是
②请写出线段AD,BE,DE之间的数量关系
(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC, B=60°,D、E分别为AB、BC上的点,AE、CD交于点F.

(1)如图1,AE、CDABC的角平分线. ①求证: AFC=120°;②若AD=6,CE=4,求AC的长?

(2)如图2,若∠FAC=FCA=30°,求证:AD=CE.

查看答案和解析>>

同步练习册答案