精英家教网 > 初中数学 > 题目详情

【题目】如图所示,直线l1l2相交于点O,且∠1+∠3=2(∠2+∠4),求下列角的度数.(1)∠2+∠4;(2)∠1,∠2.

【答案】(1)∠2+∠4=120°;(2)∠1=120°,∠2=60°.

【解析】

(1)根据∠1与∠2、∠3与∠4互为邻补角得∠1=180°-∠2,∠3=180°-∠4,将∠1、∠3代入∠1+∠3=2(∠2+∠4),可得∠2+∠4度数;
(2)根据对顶角相等有∠2=∠4,又由(1)知∠2+∠4=120°,故∠2=∠4=60°,进而得到∠2的邻补角∠1=120°.

(1)∵∠1∠2、∠3∠4互为邻补角,

∴∠1=180°﹣∠2,∠3=180°﹣∠4,

∵∠1+∠3=2(∠2+∠4),

∴180°﹣∠2+180°﹣∠4=2(∠2+∠4),即360°﹣(∠2+∠4)=2(∠2+∠4),

∴3(∠2+∠4)=360°,

∠2+∠4=120°;

(2)∵∠2∠4是对顶角,

∴∠2=∠4,

(1)知,∠2+∠4=120°,

∴2∠2=120°,故∠2=60°,

∵∠1=180°﹣∠2,

∴∠1=120°,

∠1=120°,∠2=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)问题探究:如图1,ACBDCE均为等边三角形,点ADE在同一直线上,连接BE

①求证:CDA≌△CEB

②求∠AEB的度数.

(2)问题变式:如图2,ACBDCE均为等腰直角三角形,∠ACB=DCE=90°,点ADE在同一直线上,CMDCEDE边上的高,连接BE

①请求出∠AEB的度数

②直接写出线段AE、CM、BE之间的数量关系,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F分别是 ABCD的边AB,CD的中点,则图中平行四边形的个数共有( ).

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1) (2)(-)×(-

(3) (4)(-2a23+ a8÷a2 +3a·a5

(5)(2x-5)(2x+5)-2x(2x-3) (6)(3x+y)2-(3x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解市民获取新闻的最主要途径某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:

(1)这次接受调查的市民总人数是   ;请补全条形统计图;

(2)扇形统计图中,电视所对应的圆心角的度数是

(3)若该市约有90万人,请你估计其中将电脑和手机上网作为获取新闻的最主要途径的总人数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8 ,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则下列结论正确的个数是( ) ①ME∥HG;②△MEH是等边三角形;③∠EHG=∠AMN;④tan∠EHG=

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B的坐标为(18,6).

(1)求直线l1,l2对应的函数表达式;

(2)C为线段OB上一动点(C不与点O,B重合),作CD∥y轴交直线l2于点D,设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两列火车分别从A,B两城同时相向匀速驶出,甲车开往终点B城,乙车开往终点A城,乙车比甲车早到达终点;如图,是两车相距的路程d(千米)与行驶时间t(小时)的函数关系图象.
(1)A,B两城相距千米,经过小时两车相遇;
(2)分别求出甲、乙两车的速度;
(3)直接写出甲车距A城的路程S1、乙车距A城的路程S2与t的函数关系式;(不必写出t的范围)
(4)当两车相距100千米时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB边的垂直平分线BCDAC边的垂直平分线BCE 相交于点OADE的周长为6cm

1)求BC的长;

2)分别连结OAOBOC,若△OBC的周长为16cm,求OA的长;

查看答案和解析>>

同步练习册答案