【题目】如图,在矩形ABCD中,AB=8 ,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则下列结论正确的个数是( ) ①ME∥HG;②△MEH是等边三角形;③∠EHG=∠AMN;④tan∠EHG=
A.1个
B.2个
C.3个
D.4个
【答案】C
【解析】解:如图3,由折叠可得,∠MEN=∠A=90°,HG⊥NE, 即ME⊥EN,HG⊥EN,
∴EM∥GH,故①正确;
∴∠NME=∠NHG,
由折叠可得,∠NME=∠AMN,∠EHG=∠NHG,
∴∠AMN=∠EHG,故③正确;
如图2,作NF⊥CD于F.
设DM=x,则AM=EM=10﹣x,
∵点E是CD的中点,AB=CD=8 ,
∴DE= CD=4 ,
在Rt△DEM中,∵DM2+DE2=EM2 ,
∴(4 )2+x2=(10﹣x)2 ,
解得x=2.6,
∴DM=2.6,AM=EM=7.4,
∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,
∴∠DEM=∠ENF,
∵∠D=∠EFN=90°,
∴△DME∽△FEN,
∴ = ,即 = ,
∴EN= ,
∴AN= ,
∴tan∠AMN= = ,
∴tan∠EHG= ,故④正确;
又∵tan60°= > ,
∴∠AMN≠60°,即∠EMH≠60°,
∴△MEH不是等边三角形,故②错误.
∴正确的结论有3个.
故选:C.
【考点精析】根据题目的已知条件,利用矩形的性质和翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB,AC的垂直平分线分别交BC于D,E两点,垂足分别是M,N.
(1)若△ADE的周长是10,求BC的长;
(2)若∠BAC=100°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在今年法国网球公开赛中,我国选手李娜在决赛中成功击败对手夺冠,称为获得法国网球公开赛冠军的亚洲第一人.某班体育委员就本班同学对该届法国网球公开赛的了解程度进行全面调查统计,收集数据后绘制了两幅不完整的统计图,如图(1)和图(2).根据图中的信息,解答下列问题:
(1)该班共有名学生;
(2)在图(1)中,“很了解”所对应的圆心角的度数为;
(3)把图(2)中的条形图形补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.
(1)求CD的长;
(2)若点P以1cm/s速度运动,点Q以2 cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;
(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示已知,,OM平分,ON平分;
(1);
(2)如图∠AOB=900,将OC绕O点向下旋转,使∠BOC=,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.
(3),,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求的度数;并从你的求解中看出什么什么规律吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下图回答问题:
(1)指出小明的作业从哪一步开始出现的错误,请更正过来,并计算出正确结果;
(2)若a,b是不等式组 的整数解(a<b),求上题{}分式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有( )
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示
(1)请画出一种从左面看到的它的形状图;
(2)根据你所画出的从左面看到的形状图,结合从正面和从上面看到的这个几何体的形状图直接写出这个几何体所需要的小立方体的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com