精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.
(1)求CD的长;
(2)若点P以1cm/s速度运动,点Q以2 cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;
(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.

【答案】
(1)解:过D点作DH⊥BC,垂足为点H,

则有DH=AB=8cm,BH=AD=6cm.

∴CH=BC﹣BH=14﹣6=8cm.

在Rt△DCH中,∠DHC=90°,

∴CD= =8 cm.


(2)解:当点P、Q运动的时间为t(s),则PC=t.

① 当点Q在CD上时,过Q点作QG⊥BC,垂足为点G,则QC=2 t.

又∵DH=HC,DH⊥BC,

∴∠C=45°.

∴在Rt△QCG中,QG=QCsin∠C=2 t×sin45°=2t.

又∵BP=BC﹣PC=14﹣t,

∴SBPQ= BP×QG= (14﹣t)×2t=14t﹣t2

当Q运动到D点时所需要的时间t= = =4.

∴S=14t﹣t2(0<t≤4).

②当点Q在DA上时,过Q点作QG⊥BC,垂足为点G,

则:QG=AB=8cm,BP=BC﹣PC=14﹣t,

∴SBPQ= BP×QG= (14﹣t)×8=56﹣4t.

当Q运动到A点时所需要的时间t= = =4+

∴S=56﹣4t(4<t≤4+ ).

综合上述:所求的函数关系式是:

S=14t﹣t2(0<t≤4),

S=56﹣4t(4<t≤4+ );


(3)解:要使运动过程中出现PQ∥DC,

∵AD∥BC,∴CPQD是平行四边形,

∴CP=DQ,

1t=at﹣8

∴t= ①,

又∵Q点在AD边上,

<t≤ ②,

把①代入②,解得a≥1+

故a的取值范围是a≥1+


【解析】(1)过D点作DH⊥BC,垂足为点H,则在Rt△DCH中,由DH、CH的长度,运用勾股定理即可求出CD的长;(2)由于点P在线段CB上运动,而点Q沿C→D→A方向做匀速运动,所以分两种情况讨论:①点Q在CD上;②点Q在DA上.针对每一种情况,都可以过Q点作QG⊥BC于G.由于点P、Q运动的时间为t(s),可用含t的代数式分别表示BP、QG的长度,然后根据三角形的面积公式即可求出S与t的函数关系式,并写出t的取值范围;(3)令DQ=CP,Q点在AD边上,求出a的取值范围.
【考点精析】本题主要考查了勾股定理的概念和直角梯形的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;一腰垂直于底的梯形是直角梯形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么ABP的面积与点P运动的路程之间的函数图象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )

A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买队服不打折,购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,当a为多少时,到两家商场购买都一样?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1) (2)(-)×(-

(3) (4)(-2a23+ a8÷a2 +3a·a5

(5)(2x-5)(2x+5)-2x(2x-3) (6)(3x+y)2-(3x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从点A出发,以3个单位/秒的速度沿着数轴负方向匀速运动,设运动时间为t秒(t>0).

(1)写出数轴上点B表示的数 ;动点P对应的数是 (用含t的代数式表示);

(2)动点Q从点B出发,以1个单位/秒的速度匀速运动,且点P, Q同时出发

若动点Q沿着数轴正方向匀速运动,多少秒时点P与点Q相遇?

若动点Q沿着数轴负方向匀速运动,多少秒时点P与点Q相距4个单位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8 ,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则下列结论正确的个数是( ) ①ME∥HG;②△MEH是等边三角形;③∠EHG=∠AMN;④tan∠EHG=

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB130°,∠COD80°OMON分别是∠AOB和∠COD的平分线.

(1)如果OAOC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;

(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0n155),如图2

①∠MON与旋转度数有怎样的数量关系?说明理由;

②当n为多少时,∠MON为直角?

(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0m100),如图3,∠MON与旋转度数有怎样的数量关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,贤贤同学用手工纸制作一个台灯灯罩,请画出这个几何体的左视图和俯视图.
(2)如图2,已知直线AB与CD相交于点O,EO⊥AB,OF是∠AOC的平分线,∠EOC=∠AOC,求∠DOF的度数.

查看答案和解析>>

同步练习册答案