【题目】如图,在网格中,小正方形边长为a,则图中是直角三角形的是_____.
【答案】直角三角形有两个,分别是△ABC与△DEF.
【解析】
根据已知及勾股定理的逆定理进行分析,从而得到答案.
解:∵小正方形的边长为a,
∴在△ABC中,
BC2=a2+(3a) 2=10a2,
AB2=AC2=a2+(2a) 2=5a2,
故BC2=AB2+AC2.
在△GKP中,
KG2=(2a)2+(2a)2=8a2,
GP2=a2+(2a) 2=5a2,KP2=(3a) 2=9a2,
KP2≠KG2+GP2.
在△DEF中,
DE2=(2a)2+(2a)2=8a2,
EF2=(3a)2+(3a)2=18a2,
DF2=a2+(5a)2=26a2,故DF2=DE2+EF2.
故直角三角形有两个,分别是△ABC与△DEF.
科目:初中数学 来源: 题型:
【题目】某校学生会为了解本校初中学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查.在确定调查对象时,大家提出以下几种方案:A.对各班班长进行调查;B.对某班的全体学生进行调查;C.从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会将收集到的数据整理后绘制成如图所示的条形统计图.
(1)为了使收集到的数据具有代表性.学生会在确定调查对象时应选择方案________ (填A,B或C);
(2)被调查的学生每天做作业所用时间的众数为________h;
(3)根据以上统计结果,估计该校900名初中学生中每天做作业用1.5 h的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.
(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1 , L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.
(1)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;
(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1 (x﹣m)2+n的任意一条友好抛物线的解析式为y=a2 (x﹣h)2+k,请写出a1与a2的关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2 .
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=2x+1与双曲线y= 的一个交点为A(m,﹣3).
(1)求双曲线的表达式;
(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y= 的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com