精英家教网 > 初中数学 > 题目详情

【题目】为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中信息,解决下列问题:
(1)求此次调查中接受调查的人数.
(2)求此次调查中结果为非常满意的人数.
(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.

【答案】
(1)解:∵满意的有20人,占40%,

∴此次调查中接受调查的人数:20÷40%=50(人)


(2)解:此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人)
(3)解:画树状图得:

∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,

∴选择的市民均来自甲区的概率为: =


【解析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.
(1)求每行驶1千米纯用电的费用;
(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图: 第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是(

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=k(x+1)(x﹣ )与x轴交于点A、B,与y轴交于点C,则能使△ABC为等腰三角形抛物线的条数是(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圆,D是CB延长线上一点,且BD=1,连接DA,点P是射线DA上的动点.
(1)求证DA是⊙O的切线;
(2)DP的长度为多少时,∠BPC的度数最大,最大度数是多少?请说明理由.
(3)P运动的过程中,(PB+PC)的值能否达到最小,若能,求出这个最小值,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1 , 矩形PDFE的面积为S2 , y=S1+S2 , 则y与x的关系式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC= ,求BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中 =1.732)

查看答案和解析>>

同步练习册答案