精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC= ,求BN的长.

【答案】
(1)证明:∵△BCO中,BO=CO,

∴∠B=∠BCO,

在Rt△BCE中,∠2+∠B=90°,

又∵∠1=∠2,

∴∠1+∠BCO=90°,

即∠FCO=90°,

∴CF是⊙O的切线


(2)证明:∵AB是⊙O直径,

∴∠ACB=∠FCO=90°,

∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,

即∠3=∠1,

∴∠3=∠2,

∵∠4=∠D,

∴△ACM∽△DCN


(3)解:∵⊙O的半径为4,即AO=CO=BO=4,

在Rt△COE中,cos∠BOC=

∴OE=COcos∠BOC=4× =1,

由此可得:BE=3,AE=5,由勾股定理可得:

CE= = =

AC= = =2

BC= = =2

∵AB是⊙O直径,AB⊥CD,

∴由垂径定理得:CD=2CE=2

∵△ACM∽△DCN,

=

∵点M是CO的中点,CM= AO= ×4=2,

∴CN= = =

∴BN=BC﹣CN=2 =


【解析】(1)根据切线的判定定理得出∠1+∠BCO=90°,即可得出答案;(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可;(3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1= x﹣4与反比例函数y2= 的图象在第一象限相交于点A(6,n),与x轴相交于点B.
(1)填空:n的值为 , k的值为;当y2≥﹣4时,x的取值范围是
(2)以AB为边作菱形ABCD,使点C在点B右侧的x轴上,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中信息,解决下列问题:
(1)求此次调查中接受调查的人数.
(2)求此次调查中结果为非常满意的人数.
(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB,OA=OB,点E在OB 上,四边形AEBF是矩形.
(1)请你只用无刻度的直尺在图中画出∠AOB的平分线(保留画图痕迹);
(2)若∠AOB=45°,OA=OB=2 ,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题: 为了响应市政府“绿色出行”的号召,小张上下班由自驾车方式改为骑自行车方式.已知小张单位与他家相距20千米,上下班高峰时段,自驾车的平均速度是自行平均车速度的2倍,骑自行车所用时间比自驾车所用时间多 小时.求自驾车平均速度和自行车平均速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.哥哥的身高比弟弟高是必然事件
B.今年中秋节有雨是不确定事件
C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件
D.“彩票中奖的概率为 ”表示买5张彩票肯定会中奖

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1 , x2 , a,b的大小关系为(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

同步练习册答案