精英家教网 > 初中数学 > 题目详情

【题目】综合题。
(1)计算:|﹣ |+( 1﹣2cos45°.
(2)解方程: + =1.

【答案】
(1)解:原式= +4﹣2× =4
(2)解:去分母得:x2+2x+1﹣4=x2﹣1,

解得:x=1,

经检验x=1是增根,分式方程无解


【解析】(1)原式利用绝对值的代数意义,
【考点精析】认真审题,首先需要了解去分母法(先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊),还要掌握特殊角的三角函数值(分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】概念学习

规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.

从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.

理解概念

如图1,在中,,请写出图中两对“等角三角形”概念应用

如图2,在中,CD为角平分线,

求证:CD的等角分割线.

中,CD的等角分割线,直接写出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.

(1)证明:AD=BE;
(2)求∠AEB的度数.
(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用计算器计算:

(1)π-(精确到0.01);

(2) (精确到0.001);

(3)4(精确到0.1);

(4)+()(精确到0.01).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣ +bx+c图象经过A(﹣1,0),B(4,0)两点.

(1)求抛物线的解析式;
(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②试探究:在点D运动过程中,DE、DF、CF的长度之和是否发生变化?若不变,求出它的值,若变化,试说明变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法中正确的个数是(  )

①CE=BF;②△ABD和ADC的面积相等;③BF∥CE;④CE,BF均与AD垂直

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两条直线都与第三条直线相交,∠1和∠2是内错角,∠3和∠2是邻补角.

(1)根据上述条件,画出符合题意的图形;

(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度数.

查看答案和解析>>

同步练习册答案