精英家教网 > 初中数学 > 题目详情

【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.

【答案】
(1)证明:∵D、G分别是AB、AC的中点,

∴DG∥BC,DG= BC,

∵E、F分别是OB、OC的中点,

∴EF∥BC,EF= BC,

∴DG=EF,DG∥EF,

∴四边形DEFG是平行四边形


(2)解:∵∠OBC和∠OCB互余,

∴∠OBC+∠OCB=90°,

∴∠BOC=90°,

∵M为EF的中点,OM=3,

∴EF=2OM=6.

由(1)有四边形DEFG是平行四边形,

∴DG=EF=6


【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF= BC,DG∥BC且DG= BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一副三角板按如图放置,则下列结论

①如果∠2=30°,则有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,则有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正确的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ECD的中点,连接AE、BE,BEAE,延长AEBC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4 个小长方形,然后按图2的形状拼成一个正方形.

(1)2中阴影部分的面积为

(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系:

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:|﹣ |+( 1﹣2cos45°.
(2)解方程: + =1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;
(2)在x轴的负半轴上存在一点P,使得SAOP= SAOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是(
A.①②③④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求 的最大值;
(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠C=90°,A=34°,D,E 分别为 AB,AC 上一点,将△BCD,ADE 沿 CD,DE 翻折 A,B 恰好重合于点 P 则∠ACP=_______________

查看答案和解析>>

同步练习册答案