分析 连接BD,根据已知条件运用勾股定理逆定理可证△BCD和△ABD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.
解答
解:如图,连接BD,
∵∠C=90°,
∴BD=$\sqrt{B{C}^{2}+C{D}^{2}}$=$\sqrt{{8}^{2}+{6}^{2}}$=10,
∵BD2+AB2=102+242=262=AD2,
∴∠ABD=90°,
∴四边形ABCD的面积=S△ABD+S△BCD=$\frac{1}{2}×8×6$+$\frac{1}{2}×24×10$=144.
故答案为:144.
点评 本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 18 | B. | 16 | C. | 20 | D. | 23 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com