精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系中,点A,B的坐标分别为A(2,-5),B(5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.
(1)在y轴上找一点C,使得AC+BC的值最小;
(2)在x轴上找一点D,使得AD-BD的值最大.
(1)C点如图1所示(或作B关于y轴的对称点B′,连结AB′交y轴于点C).
设直线AB′的解析式为y=kx+b(k≠0).
∵B(5,1),
∴B′(5,-1).
又∵A(2,-5),
-1=5k+b
-5=2k+b

解得,
k=-
6
7
b=-
23
7

∴AB′直线解析式:y=-
6
7
x-
23
7

∴点C的坐标为(0,-
23
7
);

(2)D点如图所示,(作点B关于x轴的对称点B1,连结AB1延长交x轴于点D).
(理由:若A,B1,D三点不共线,根据三角形两边之差小于第三条边可得:AD-B1D<AB1,所以当A,B1,D三点共线时,AD-B1D=AB1,此时AD-B1D有最大值,最大值为AB1的长度.此时,点D在直线AB1上)
根据题意由A(2,-5),B1(5,-1)代入可得直线AB1的解析式为:y=
4
3
x-
23
3

∴当AD-BD有最大值时,点D的坐标为(
23
4
,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知在平面直角坐标系中,点A(3,2),B(2,-1),点P在x轴上运动,为使|PA-PB|最大,则点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,直线y=kx+b交x轴负半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CA=
3
4
CO,△ABC的面积为6.

(1)求C点的坐标;
(2)求直线AB的解析式;
(3)D是第二象限内一动点,且OD⊥BD,直线BE垂直射线CD于E,OF⊥OD交直线BE于F.当线段OD,BD的长度发生改变时,∠BDF的大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

直线y=kx-4与y轴相交所成的锐角的正切值为
1
2
,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,有一条直线l:y=-
3
3
x+4
与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标______;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某县为了打造梨乡水城,发展旅游业,从2008年开始扩大梨树种植面积,梨树种植面积y(百亩)与时间x(年)之间的函数关系如图所示.
(1)求y与x之间的函数关系式;(不必写自变量x的取值范围)
(2)求该县2012年梨树的种植面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.
(1)求A、B、P三点的坐标;
(2)求四边形PQOB的面积.

查看答案和解析>>

同步练习册答案