【题目】如图,在平面直角坐标系xOy中,过坐标原点O的直线l与双曲线y= 相交于点A(m,3).
(1)求直线l的表达式;
(2)过动点P(n,0)且垂于x轴的直线与l及双曲线的交点分别为B,C,当点B位于点C上方时,写出n的取值范围 .
科目:初中数学 来源: 题型:
【题目】某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于45件.
生产产品件数与所用时间之间的关系见下表:
生产甲产品件数(件) | 生产乙产品件数(件) | 所用总时间(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件计酬,每生产一件甲产品可得6元,每生产一件乙产品可得10元.
根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).
(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AC和直线l分别垂直线段AB于点A,B.点P是线段AB上的一个动点,由A移动到B,连接CP,过点P作PD⊥CP交l于点D,设线段AP的长为x,BD的长为y,在下列图象中,能大致表示y与x之间函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l(单位:米)与时刻t(单位:时)的关系满足函数关系l=at2+bt+c(a,b,c是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t是( )
A.12.75
B.13
C.13.33
D.13.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O分别交AC,BC于点D,E,过点A作⊙O的切线交BC的延长线于点F,连接AE.
(1)求证:∠ABC=2∠CAF;
(2)过点C作CM⊥AF于M点,若CM=4,BE=6,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,
其中正确的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com