精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,数学公式)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.

解:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),
设抛物线的解析式为y=a(x+1)(x-3),
∵点D(2,)在抛物线上,
=a×3×(-1),解得a=
∴抛物线解析式为:y=(x+1)(x-3)=x2+x+

(2)抛物线解析式为:y=x2+x+,令x=0,得y=,∴C(0,),
∵D(2,),∴CD∥OB,直线CD解析式为y=
直线l解析式为y=kx-2,令y=0,得x=;令y=,得x=
如答图1所示,设直线l分别与OB、CD交于点E、F,则E(,0),F(),
OE=,BE=3-,CF=,DF=2-
∵直线l平分四边形OBDC的面积,
∴S梯形OEFC=S梯形FDBE
(OE+CF)•OC=(FD+BE)•OC,
∴OE+CF=FD+BE,即:+=(3-)+(2-),
解方程得:k=,经检验k=是原方程的解且符合题意,
∴k=

(3)假设存在符合题意的点P,其坐标为(0,t).
抛物线解析式为:y=x2+x+=(x-1)2+2,
把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线解析式为:y=x2
依题意画出图形,如答图2所示,过点M作MD⊥y轴于点D,NE⊥y轴于点E,
设M(xm,ym),N(xn,yn),则MD=-xm,PD=t-ym;NE=xn,PE=t-yn
∵直线PM与PN关于y轴对称,∴∠MPD=∠NPE,
又∠MDP=∠NEP=90°,
∴Rt△PMD∽Rt△PNE,
,即 ①,
∵点M、N在直线y=kx-2上,∴ym=kxm-2,yn=kxn-2,
代入①式化简得:(t+2)(xm+xn)=2kxmxn
把y=kx-2代入y=x2.,整理得:x2+2kx-4=0,
∴xm+xn=-2k,xmxn=-4,代入②式解得:t=2,符合条件.
所以在y轴正半轴上存在一个定点P(0,2),使得不论k取何值,直线PM与PN总是关于y轴对称.
分析:(1)首先求出点A、B的坐标,然后利用交点式、待定系数法求出抛物线的解析式;
(2)首先求出点C坐标,确定CD∥OB;由题意,直线l平分四边形OBDC的面积,则S梯形OEFC=S梯形FDBE,据此列方程求出k的值;
(3)首先求出平移变换后的抛物线解析式,如答图2所示,然后证明Rt△PMD∽Rt△PNE,由相似三角形比例线段关系得到式①:,化简之后变为式②:(t+2)(xm+xn)=2kxmxn;最后利用一元二次方程根与系数的关系求出t的值.
点评:本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、抛物线的平移、相似三角形、一元二次方程根与系数关系、图形面积计算等知识点,有一定的难度.第(2)问的解题要点是根据S梯形OEFC=S梯形FDBE(如答图1)列方程求解,第(3)问是存在型问题,综合利用相似三角形的判定与性质、函数图象上点的坐标特征及一元二次方程根与系数关系求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案