【题目】阅读、填空并将说理过程补充完整:如图,已知点D、E分别在△ABC的边AB、AC上,且∠AED=∠B,延长DE与BC的延长线交于点F,∠BAC和∠BFD的角平分线交于点G.那么AG与FG的位置关系如何?为什么?
解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.
因为AG、FG分别平分∠BAC和∠BFD(已知)
所以∠BAG= , (角平分线定义)
又因为∠FPQ= +∠AED, = +∠B
(三角形的一个外角等于与它不相邻的两个内角的和)
∠AED=∠B(已知)
所以∠FPQ= (等式性质)
(请完成以下说理过程)
【答案】∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG
【解析】
根据角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和,等角对等边和等腰三角形三线合一来解题即可.
解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.
因为AG、FG分别平分∠BAC和∠BFD(已知)
所以∠BAG=∠CAG,∠PFG=∠QFG(角平分线定义)
又因为∠FPQ=∠CAG+∠AED,∠FQG=∠BAG+∠B(三角形的一个外角等于与它不相邻的两个内角的和)
∠AED=∠B(已知)
所以∠FPQ=∠FQG(等式性质)
所以FP=FQ(等角对等边)
又因为∠PFG=∠QFG
所以AG⊥FG(等腰三角形三线合一).
故答案为:∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG.
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(-3,-6)的抛物线经过点(-1,-4),下列结论:①b2>4ac;②ax2+bx+c≥-6;③若点(-2,m),(-5,n)在抛物线上,则m>n;④关于x的一元二次方程的两根为﹣5和﹣1,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】越来越多的人在用微信付款、转帐.把微信账户里的钱转到银行卡叫做提现,自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.
(1)小颖2018年开始使用微信,她用自己的微信账户第一次提现金额为1800元,需支付手续费多少元?
(2)小亮自2016年3月1日至今,用自己的微信账户共提现三次,提现金额和手续费如下:
第一次 | 第二次 | 第三次 | |
提现金额/元 | |||
手续费/元 | 0 | 0.4 | 3.4 |
求小亮前两次提现的金额分别为多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,可以单独用正三角形、正方形或正六边形铺满地面,如果我们要同时用两种不同的正多边形铺满地面,可以设计出几种不同的组合方案?
问题解决:
猜想1:是否可以同时用正方形、正八边形两种正多边形组合铺满地面?
验证1并完成填空:在铺地面时,设围绕某一个点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意:可得方程①: ,
整理得②: ,
我们可以找到方程的正整数解为③: .
结论1:铺满地面时,在一个顶点周围围绕着④个正方形和⑤个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以铺满地面.
猜想2:是否可以同时用正三角形和正六边形两种正多边形组合铺满地面?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)之间满足一次函数.
(1)、写出超市每天的销售利润(元)与每件的销售价x(元)之间的函数关系式;
(2)、如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?
(3)、如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤a+b+c<0.其中结论正确的个数有( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时从A地出发,匀速开往B地.甲车行驶到B地后立即沿原路线以原速度返回A地,到达A地后停止运动;当甲车到达A地时,乙车恰好到达B地,并停止运动.已知甲车的速度为150km/h.设甲车出发xh后,甲、乙两车之间的距离为ykm,图中的折线OMNQ表示了整个运动过程中y与x之间的函数关系.
(1)A、B两地的距离是______km,乙车的速度是______km/h;
(2)指出点M的实际意义,并求线段MN所表示的y与x之间的函数表达式;
(3)当两车相距150km时,直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,一次函数的图象与x轴、y轴分别交于A、B两点,为一次函数的图象上一点.
直接写出A、B两点的坐标:______,______,______,______
若,求k的取值范围;
若点Q为一次函数图象上第一象限内一点且满足,,求的值;
一次函数的图象与一次函数的图象交于C点,与y轴交于点D,直线OP与直线AB、直线CD不能围成三角形,直接写出符合条件的P点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com