【题目】我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.
(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?
(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.
【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元
【解析】
试题分析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;
(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.
试题解析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:
,
解得:.
答:购买甲种鱼苗500尾,乙种鱼苗200尾.
(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则
w=3m+5(700﹣m)=﹣2m+3500,
∵﹣2<0,
∴w随m的增大而减小,
∵0<m≤280,
∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),
∴700﹣m=420.
答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.
科目:初中数学 来源: 题型:
【题目】下列计算正确的是( )
A.(+6)+(﹣13)=+7
B.(+6)+(﹣13)=﹣19
C.(+6)+(﹣13)=﹣7
D.(﹣5)+(﹣3)=8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).
(1)设△POQ的面积为s,写出s关于t的函数关系式;当t为何值时,△POQ的面积最大,这时面积是多少
(2)当t为何值时,△POQ与△AOB相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )
A. 三边中线的交点 B. 三条角平分线的交点
C. 三边垂直平分线的交点 D. 三边上高的交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了
A. 9cm2 B. 6acm2 C. (6a+9)cm2 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转(0°<<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证: BD⊥CF. ② 当AB=2,AD=3,时,求线段BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com