分析 (1)把A(-8,0),B(4,0)代入y=ax2+bx-4$\sqrt{2}$得$\left\{\begin{array}{l}{64a-8b-4\sqrt{2}=0}\\{16a+4b-4\sqrt{2}=0}\end{array}\right.$,解方程组即可.
(2)求出AD、DC,可知AD=DC,推出∠DCA=∠DAC,所以tan∠ACD=tan∠DAC=$\frac{OC}{OA}$,由此即可解决问题.
(3)存在.如图3中,连接AC、PO.因为△ADC的面积为定值,所以△APC面积最大时,四边形APCD的面积最大,设P(m,$\frac{\sqrt{2}}{8}$m2+$\frac{\sqrt{2}}{2}$m-4$\sqrt{2}$),根据S△PAC=S四边形APCO-S△AOC=$\frac{1}{2}$×8×(-$\frac{\sqrt{2}}{8}$m2-$\frac{\sqrt{2}}{2}$m+4$\sqrt{2}$)+$\frac{1}{2}$×4$\sqrt{2}$×(-m)-$\frac{1}{2}$×8×4$\sqrt{2}$=-$\frac{\sqrt{2}}{2}$(m+4)2+8$\sqrt{2}$,由此利用二次函数的性质即可解决问题.
解答 解:(1)把A(-8,0),B(4,0)代入y=ax2+bx-4$\sqrt{2}$
得$\left\{\begin{array}{l}{64a-8b-4\sqrt{2}=0}\\{16a+4b-4\sqrt{2}=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{\sqrt{2}}{8}}\\{b=\frac{\sqrt{2}}{2}}\end{array}\right.$,
∴二次函数的解析式为y=$\frac{\sqrt{2}}{8}$x2+$\frac{\sqrt{2}}{2}$x-4$\sqrt{2}$.
(2)如图2中,
∵D(-2,0),C(0,-4$\sqrt{2}$),A(-8,0),B(4,0),
∴AD=6,OD=2,OC=4$\sqrt{2}$,DC=$\sqrt{{2}^{2}+(4\sqrt{2})^{2}}$=6,
∴DA=DC,
∴∠DCA=∠DAC,
∴tan∠ACD=tan∠DAC=$\frac{OC}{OA}$=$\frac{4\sqrt{2}}{8}$=$\frac{\sqrt{2}}{2}$.
(3)存在.理由如下,
如图3中,连接AC、PO.
∵△ADC的面积为定值,∴△APC面积最大时,四边形APCD的面积最大,设P(m,$\frac{\sqrt{2}}{8}$m2+$\frac{\sqrt{2}}{2}$m-4$\sqrt{2}$),
∴S△PAC=S四边形APCO-S△AOC=$\frac{1}{2}$×8×(-$\frac{\sqrt{2}}{8}$m2-$\frac{\sqrt{2}}{2}$m+4$\sqrt{2}$)+$\frac{1}{2}$×4$\sqrt{2}$×(-m)-$\frac{1}{2}$×8×4$\sqrt{2}$=-$\frac{\sqrt{2}}{2}$(m+4)2+8$\sqrt{2}$,
∵-$\frac{\sqrt{2}}{2}$<0,
∴m=-4时,△APC的面积最大,即四边形APCD的面积最大,
∴P(-4,-4$\sqrt{2}$).
点评 本题考查二次函数的综合题、待定系数法、等腰三角形的判定、锐角三角函数、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 不相交的两条直线叫做平行线 | |
B. | 点到直线的距离是这点到直线的垂线段 | |
C. | 过一点有且只有一条直线与已知直线平行 | |
D. | 在同一平面内,垂直于同一直线的两直线平行 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com