精英家教网 > 初中数学 > 题目详情
3.如图,⊙O过点B,C,圆心O在等腰直角△ABC的内部,∠BAC=90°,若OA=1,BC=6,则⊙O的半径为(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.$\sqrt{13}$D.3$\sqrt{2}$

分析 过O作OD⊥BC,由垂径定理可知BD=CD=$\frac{1}{2}$BC,根据△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的长,在Rt△OBD中利用勾股定理即可求出OB的长.

解答 解:过O作OD⊥BC,
∵BC是⊙O的一条弦,且BC=6,
∴BD=CD=$\frac{1}{2}$BC=$\frac{1}{2}$×6=3,
∴OD垂直平分BC,又AB=AC,
∴点A在BC的垂直平分线上,即A,O及D三点共线,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∴△ABD也是等腰直角三角形,
∴AD=BD=3,
∵OA=1,
∴OD=AD-OA=3-1=2,
在Rt△OBD中,
OB=$\sqrt{B{D}^{2}+O{D}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
故选C.

点评 本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.若y=kx+b,当x>0时,y>0,且y随x增大而增大,则k范围是k>0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知a+b=-3,ab=2,求$\sqrt{\frac{b}{a}}$+$\sqrt{\frac{a}{b}}$的值.
解:$\sqrt{\frac{b}{a}}$+$\sqrt{\frac{a}{b}}$=$\frac{\sqrt{b}}{\sqrt{a}}$+$\frac{\sqrt{a}}{\sqrt{b}}$=$\frac{(\sqrt{b})^{2}+(\sqrt{a})^{2}}{\sqrt{a}•\sqrt{b}}$=$\frac{a+b}{\sqrt{ab}}$=$\frac{-3}{\sqrt{2}}$=-$\frac{3}{2}$$\sqrt{2}$.
我们知道$\sqrt{\frac{b}{a}}$≥0,$\sqrt{\frac{a}{b}}$≥0,其和必然不小于0,而题中的结果却是负数,说明计算过程有错,请你指出错在哪一步,错的原因是什么,正确解法又该怎样?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如表:
型号进价(元/只)售价(元/只)
A型1012
B型1523
设小张购进A型文具x只.
(Ⅰ)当x为何值时,购进这两种文具的进货款恰好为1320元;
(Ⅱ)当x为何值时,销售这批文具所获利润最大,并且所获利润不超过进货价格的40%,最大利润是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.求A、B两种礼盒的单价分别是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.方程2$\sqrt{1+x}$-$\sqrt{2+2\sqrt{1-{x}^{2}}}$=1的解是x=$\frac{\sqrt{3}}{2}$或x=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在 Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,$\frac{OA}{BA}$=$\frac{3}{5}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某城市2016年约有初中生10万人,2017年初中生人数还会略有增长.该市青少年活动中心对初中生阅读情况进行了统计,绘制的统计图表如表:
2013-2016年某市喜爱阅读的初中生人数
年份喜爱阅读的初中生人数(万人)
20131.0
20142.2
20153.5
20165.0
根据以上信息解答下列问题:
(1)扇形统计图中m的值为8;
(2)2016年,在该市喜爱阅读的初中生中,首选阅读科普读物的人数为0.75万;
(3)请你结合对数据的分析,预估2017年该市喜爱阅读的初中生人数,并简单说明理由.

查看答案和解析>>

同步练习册答案