精英家教网 > 初中数学 > 题目详情

【题目】有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?

【答案】解:设有x个小朋友, 依题意得:3x+2=4x﹣3,
解得x=5,
所以3x+2=17(个)
答:有5个小朋友,17个苹果
【解析】设有x个小朋友,根据苹果的总数相等列出方程并解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACD是线段BC的延长线上一点,以AD为一边在AD的右侧作ADE,使AE=ADDAE=BAC,连接CE

1)如图,点D在线段BC的延长线上移动,若∠BAC=40,则∠DCE=

2)设∠BAC=mDCE=n

①如图,当点D在线段BC的延长线上移动时,mn之间有什么数量关系?请说明理由.

②当点D在直线BC上(不与BC重合)移动时,mn之间有什么数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形OABC中,OA=a,OC=5,BC=3,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1).

1 2 3

(1)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上 (如图2) ,求a的值.

(2)若折叠后点D恰为AB的中点(如图3),求θ的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)求证:ADCE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,BD=DC∠ABD=∠ACD,求证:AD平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.

(1)如图,当α=60°时,延长BE交AD于点F.

①求证:△ABD是等边三角形;

②求证:BF⊥AD,AF=DF;

③请直接写出BE的长;

(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是

查看答案和解析>>

同步练习册答案