分析 假设x1=x2,则方程x2-2abx+2a+2b=0有两个相等的实数根,即判别式△=0,据此即可得到a和b的关系,然后根据a、b是正整数从而得到错误的结论,从而证明△=0错误,得到所证的结论.
解答 证明:假设x1=x2,
则方程x2-2abx+2a+2b=0有两个相等的实数根,
∴△=4a2b2-8a-8b=4a2b2-4(2a+2b)=0,
则a2b2=2a+2b,a2b2=2(a+b).
∵a、b是正整数,
∴2(a+b)是偶数,
∴a2b2也是偶数,
又∵a、b为正整数,
∴a、b中必有一个是2的倍数,不妨设a是偶数,即a是2的倍数,则a2是4的倍数.
∴a2b2是4的倍数.
∴a+b是2的倍数.
∵a是2的倍数,a2b2=2(a+b),
∴$\frac{{a}^{2}{b}^{2}}{2}$=a+b,$\frac{ab}{2}$=$\frac{a+b}{ab}$,
$\frac{ab}{2}$=$\frac{1}{a}$+$\frac{1}{b}$.
∵a、b是偶数,
∴$\frac{ab}{2}$位正偶数,
∴$\frac{1}{a}$+$\frac{1}{b}$为正整数.
又∵a、b位偶数,
∴a=b=2,
此时,a2b2=16,而2(a+b)=8,
a2b2≠2(a+b)与事实不符.
∴△≠0,即x1≠x2.
点评 本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com