【题目】如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.
(1)用含α的代数式表示β,并直接写出α的取值范围;
(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)首先证明∠DAE=2α,在Rt△ADE中,根据两锐角互余,可知2α+β=90°,(0°<α<45°);
(2)连接OF交AC于O′,连接CF.只要证明四边形AFCO是菱形,推出△AFO是等边三角形即可解决问题;
试题解析:(1)连接OC.
∵DE是⊙O的切线,
∴OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAE=2α,
∵∠D=90°,
∴∠DAE+∠E=90°,
∴2α+β=90°(0°<α<45°).
(2)连接OF交AC于O′,连接CF.
∵AO′=CO′,
∴AC⊥OF,
∴FA=FC,
∴∠FAC=∠FCA=∠CAO,
∴CF∥OA,∵AF∥OC,
∴四边形AFCO是平行四边形,
∵OA=OC,
∴四边形AFCO是菱形,
∴AF=AO=OF,
∴△AOF是等边三角形,
∴∠FAO=2α=60°,
∴α=30°,
∵2α+β=90°,
∴β=30°,
∴α=β=30°.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将样本容量为100的样本编制成组号①﹣⑧的八个组,简况如表所示:
组号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ |
频数 | 14 | 11 | 12 | 13 | 13 | 12 | 10 |
那么第⑤组的频率是__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com