精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.
(1)求AD的长;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?

【答案】
(1)解:由折叠可得,CE=CB=AO=10,而CO=AB=8,

∴OE=6,

∴AE=10﹣6=4,

设AD=x,则DB=DE=8﹣x,

Rt△ADE中,AD2+AE2=DE2

∴x2+42=(8﹣x)2

解得x=3,

∴AD=3;


(2)解:∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,

∴∠DEA=∠OCE,

由(1)可得,AD=3,AE=4,DE=5,

∵CQ=t,EP=2t,

∴PC=10﹣2t,

① 当∠PQC=∠DAE=90°时,△ADE∽△QPC,

= ,即 =

解得t=

②当∠QPC=∠DAE=90°时,△ADE∽△PQC,

= ,即 =

解得t=

综上所述,当t= 时,以P、Q、C为顶点的三角形与△ADE相似.


【解析】(1)先设AD=x,则DB=DE=8﹣x,在Rt△ADE中,根据勾股定理可得AD2+AE2=DE2 , 据此列出方程x2+42=(8﹣x)2 , 求得x=3,进而得到AD=3;(2)分两种情况进行讨论:①当∠PQC=∠DAE=90°时,△ADE∽△QPC,②当∠QPC=∠DAE=90°时,△ADE∽△PQC,分别根据相似三角形的性质,得出关于t的方程,求得t的值.
【考点精析】关于本题考查的矩形的性质和翻折变换(折叠问题),需要了解矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km②他在少年宫一共停留了3h③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,BC=6,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是(
A.6
B.6.25
C.6.5
D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数按要求分类:

负整数集合:{____________________}

正分数集合:{____________________}

负分数集合:{____________________}

整数集合:{_______________________}

负有理数集合:{_______________________}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016928-1231日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为(  )

A. 21 B. 22 C. 23 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.

(1)求AG的长;
(2)在坐标平面内存在点M(m,﹣1)使AM+CM最小,求出这个最小值;
(3)求线段GH所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了(  )天.

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

同步练习册答案