精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,G是BC中点,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延长线上一点。

(1)求证:△ABF≌△DAE

(2)尺规作图:作∠DCM的平分线,交GN于点H(保留作图痕迹,不写作法和证明),试证明GH=AG。

【答案】1)证明见解析;

2)作图见解析,证明见解析.

【解析】解:∵ 四边形ABCD是正方形

AB=BC=CD=DA

DAB=ABC=90°

DAE+GAB=90°

DEAG BFAG

AED=BFA=90°

DAE +ADE=90°

GAB =ADE

ABFDAE

ABFDAE

2)作图略

方法1:作HIBM于点I

GNDE

AGH=AED=90°

AGB+HGI=90°

HIBM

GHI+HGI=90°

AGB =GHI

GBC中点

tanAGB=

tanGHI= tanAGB=

GI=2HI

CH平分∠DCM

HCI=

CI=HI

CI=CG=BG=HI

ABGGIH

ABGGIH

AG=GH

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则=___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过两点,与x轴的另一个交点为C,顶点为D,连结CD

1)求该抛物线的表达式;

2)点P为该抛物线上一动点(与点BC不重合),设点P的横坐标为t

①当点P在直线BC的下方运动时,求的面积的最大值;

②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于BSABO =

1)求这两个函数的解析式.

2)求直线与双曲线的两个交点AC和直线ACx轴的交点D的坐标和AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农科所在相同条件下做某作物种子发芽率的实验,结果如下表所示:

种子个数

200

300

500

700

800

900

1000

发芽种子个数

187

282

435

624

718

814

901

发芽种子率

0.935

0.940

0.870

0.891

0.898

0.904

0.901

下面有四个推断:

①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891

②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);

③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;

④若用频率估计种子发芽的概率约为0.9,则可以估计种子中大约有的种子不能发芽.

其中合理的是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.

已知:如图1外的一点.

求作:过点的切线.

作法:如图2

①连接

②作线段的垂直平分线,直线

③以点为圆心,为半径作圆,交于点

④作直线.

就是所求作的的切线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图2中的图形;

2)完成下面的证明:

证明:连接

∵由作图可知的直径,

______)(填依据),

又∵的半径,

就是的切线(______)(填依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,∠B=90°AB=5cmBC=7cm.P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.

1)若PQ分别从AB同时出发,那么几秒后PBQ的面积等于4cm2

2)如果PQ分别从AB同时出发,那么几秒后,PQ的长度等于5cm

3)在(1)中,PBQ的面积能否等于7cm2? 请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.

(1)求点P的坐标;

(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.

查看答案和解析>>

同步练习册答案