【题目】如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.
(1)求轮船在B处时与灯塔M的距离;
(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M的距离是多少?灯塔M在轮船的什么方向上?
【答案】(1)轮船在B处时与灯塔M的距离为14海里;(2)14海里,灯塔M在轮船的南偏东60°方向.
【解析】
(1)根据轮船到达B处,此时测得灯塔M在北偏东60°的方向上,可以得到BA=BM,从而可以得到答案;
(2)计算出BC的长度,根据∠CBM=60°可以判断△ABM为等边三角形,即可求出答案。
解:(1)根据题意可知BA=28×0.5=14海里,
因为此时灯塔M在北偏东60°的方向上,
根据三角形外角定理可以得到∠BAM=∠M
所以BA=BM=14海里,
即轮船在B处时与灯塔M的距离为14海里;
(1)
轮船从B处继续沿正北方向航行,又经半小时后到达C处,
所以BC=28×05=14海里,
所以BC=BM
又因为∠CBM=60°
所以△ABM为等边三角形
所以CM=14海里
所以灯塔M在轮船的南偏东60°方向
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A. ①②都对 B. ①②都错 C. ①对②错 D. ①错②对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为( )
A.5B.6C.8D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格图中的每小格均是边长是1的正方形,与的顶点均在格点上,请完成下列各题:
(1)在平面直角坐标系中画出与关于x轴对称的,并写出将沿着x轴向右平移几个单位后得到;
(2)在x轴上求作一点P,使得的值最大。(要求:保留画图痕迹并直接写出点P的坐标.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程:
===-2;
==.
请回答下列问题:
(1)观察上面的解题过程,请直接写出式子= ;
(2)观察上面的解题过程,请直接写出式子= ;
(3)利用上面所提供的解法,请求+···+的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
(1)当x≥200时,求y与x之间的函数关系式
(2)若小刚家10月份上网180小时,则他家应付多少元上网费?
(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com