分析 (1)把(-1,0)和(0,3)分别代入y=-x2+bx+c中得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;
(2)先求出抛物线与x轴的交点坐标,然后利用图象找出抛物线在x轴上方所对应的自变量的范围即可.
解答 解:(1)根据题意得$\left\{\begin{array}{l}{-1-b+c=0}\\{c=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
所以二次函数解析式为y=-x2+2x+3;
(2)当y=0时,-x2+2x+3=0,
解得x1=-1,x2=3,
则抛物线与x轴的两交点坐标为(-1,0),(3,0),
所以当-1<x<3时,y>0.
点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数与不等式(组).
科目:初中数学 来源: 题型:选择题
| A. | $\frac{{{x^2}-{y^2}}}{x-y}$ | B. | $\frac{x+y}{{{x^2}+{y^2}}}$ | C. | $\frac{2x}{{{x^2}+1}}$ | D. | $\frac{{{x^2}+x}}{x+1}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 37×104 | B. | 3.7×104 | C. | 0.37×106 | D. | 3.7×105 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 150° | B. | 160° | C. | 130° | D. | 60° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com