【题目】已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数
图象上一点.将△AOB绕B点旋转至△A′O′B处.![]()
(1)求m的值;
(2)若O′落在OC上,连接AA′交OC与D点.①求证:四边形ACA′O′为平行四边形; ②求CD的长度;
(3)直接写出当AO′最短和最长时A′点的坐标.
【答案】
(1)
解:∵C(m,6)为反比例函数
图象上一点,
∴m=
=
;
(2)
如图1.
![]()
∵点C的坐标为(
,6),∴CH=
,OH=6,∴tan∠COH=
,AC= ![]()
∴∠COH=30°,OA=AC,
∴∠BOO′=60°,∠ACO=∠AOC=30°.
∵BO′=BO,
∴∠BO′O=∠BOO′=60°.
∵∠A′O′B=∠AOB=90°,
∴∠CO′A′=30°,
∴∠ACO=∠CO′A′,
∴AC∥O′A′.
又∵O′A′=OA=AC,
∴四边形ACA′O′为平行四边形;
②∵BO′=BO,∠BOO′=60°,
∴△BOB′是等边三角形,
∴OO′=OB=2.
∵∠CHO=90°,CH=
,OH=6,∴OC=
,∴CO′=OC﹣OO′=
﹣2.
∵四边形ACA′O′为平行四边形,
∴CD=O′D=
CO′=
﹣1;
(3)
解:当AO′最短时A′点的坐标(2+
,
),当AO′最长时A′点的坐标(2﹣
,﹣
).
提示:①当点O′在线段AB上时,AO′最短,
过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,如图2.
![]()
∵O′N∥OA,
∴△BNO′∽△BOA,
∴
,
∴
,
∴BN=
,O′N=
.
∵∠A′MO′=∠A′O′B=∠O′NB=90°,
∴∠MA′O′=∠NO′B,
∴△A′MO′∽△O′NB,
∴
,
∴A′M=
,O′M=
,
∴A′(2﹣
+
,
+
)即(2+
,
);
②当点O′在线段AB延长线上时,AO′最长,
过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,如图3.’
![]()
同理可得:A′(2﹣
,﹣
)
【解析】(1)只需把点C的坐标代入反比例函数的解析式,就可解决问题;(2)①过点C作CH⊥y轴与H,如图1,易证AC=OA=O′A′,要证四边形ACA′O′为平行四边形,只需证AC∥O′A′,只需证∠ACO=∠A′O′C即可;②由平行四边形ACA′O′可得CD=
CO′,要求CD,只需求CO′,只需求出OC及OO′即可;(3)根据两点之间线段最短可知:当点O′在线段AB上时AO′最短(如图2),当点O′在线段AB的延长线上时AO′最长(如图3);过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,易证△BNO′∽△BOA,△A′MO′∽△O′NB,然后只需运用相似三角形的性质即可解决问题.
科目:初中数学 来源: 题型:
【题目】一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球.
(1)请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题: ![]()
(1)这次抽样调查中,共调查了 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.![]()
(1)求证:BE=AF;
(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( ) ![]()
A.![]()
B.2 ![]()
C.3
D.2 ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com