精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在△ABC中,PAB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是(  )

A. B. C. D.

【答案】C

【解析】

A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;

B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;

C、其夹角不相等,所以不能判定相似;

D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.

A、∵∠A=A,ACP=B,

∴△ACP∽△ABC,

所以此选项的条件可以判定ACP∽△ABC;

B、∵∠A=A,APC=ACB,

∴△ACP∽△ABC,

所以此选项的条件可以判定ACP∽△ABC;

C、

当∠ACP=B时,ACP∽△ABC,

所以此选项的条件不能判定ACP∽△ABC;

D、

又∠A=A,

∴△ACP∽△ABC,

所以此选项的条件可以判定ACP∽△ABC,

本题选择不能判定ACP∽△ABC的条件,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2x+2x轴交于AB两点,与y轴交于点C

1)求点ABC的坐标;

2)点E是此抛物线上的点,点F是其对称轴上的点,求以ABEF为顶点的平行四边形的面积;

3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2bxc过点A(3, 0)、点B(0, 3).点M(m, 0)在线段OA上(与点AO不重合),过点Mx轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ

1)求抛物线表达式;

2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;

3)当PBQ为等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数ykx+b(k0)与反比例函数y(m0)的图象相交于AB两点,且点A的坐标是(12),点B的坐标是(2w)

(1)求一次函数与反比例函数的解析式;

(2)x轴的正半轴上找一点C,使△AOC的面积等于△ABO的面积,并求出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.

1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;

2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一根长为的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为

1)要使这两个正方形的面积的和等于,则剪出的两段铁丝长分别是多少?

2)剪出的两段铁丝长分别是多少时,这两个正方形的面积和最小?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)

(1)转动转盘一次,求转出的数字是-2的概率;

(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AGBC于点E,若BF=6,AB=4,则AE的长为(  )

A. B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离Skm)与慢车行驶时间th)之间的函数图象如图所示,下列说法:

甲、乙两地之间的距离为560km

快车速度是慢车速度的1.5倍;

快车到达甲地时,慢车距离甲地60km

相遇时,快车距甲地320km

其中正确的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案