精英家教网 > 初中数学 > 题目详情
9.如图,已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,若要以“SAS”为依据,还缺条件AB=DE;若要以“ASA”为依据,还缺条件∠ACB=∠DFE,若要以“AAS”为依据,还缺条件∠A=∠D.

分析 由于已知一组对应角相等,一组对应边相等,若利用SAS证全等,那么所需的另一边应该是已知角的夹边相等;若利用ASA证全等,则所需的另一角是以已知边为边的另一个角相等;若利用AAS证全等,所需的另一角是已知边的对角相等.

解答 解:已知:∠B=∠DEF,BC=EF.
若要以“SAS”为依据,还缺条件AB=DE;
若要以“ASA”为依据,还缺条件∠ACB=∠DFE;
若要以“AAS”为依据,还缺条件∠A=∠D.
故答案为AB=DE,∠ACB=∠DFE,∠A=∠D.

点评 此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年吉林省七年级下学期期中复习数学检测试卷(一)(解析版) 题型:解答题

解方程组:(1)

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,小明站在看台上的A处,测得旗杆顶端D的仰角为15°,当旗杆顶端D的影子刚好落在看台底部B处时,太阳光与地面成60°角.已知∠ABC=60°,AB=4米,求旗杆的高度.(点A与旗杆DE及其影子在同一平面内,C、B、E三点共线且旗杆与地面垂直,不考虑小明的身高)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若|2x-y-1|与|x+2y-8|互为相反数,则x=2,y=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.甲、乙两同学在解方程组 $\left\{\begin{array}{l}{mx+ny=-8①}\\{mx-ny=5②}\end{array}\right.$时,由于甲看错了①中的m,得到的解为$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$,乙看错了方程②中的n,得到的解为$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,试求出m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算中,正确的是(  )
A.$\sqrt{12}$=3$\sqrt{2}$B.$\sqrt{{3}^{2}+{4}^{2}}$=3+4=7C.(3$\sqrt{2}$)2=6D.$\sqrt{3}$•$\sqrt{6}$=3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:3$\sqrt{3}$-$\sqrt{12}$=$\sqrt{3}$;(2+$\sqrt{3}$)(2-$\sqrt{3}$)=1.
$\sqrt{2}$($\sqrt{2}+\sqrt{3}$)=2+$\sqrt{6}$;($\sqrt{80}$+$\sqrt{40}$)÷$\sqrt{5}$=4+2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为p,则实数p=1或$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解不等式(组)
①5x<2x-3
②$\left\{\begin{array}{l}{2(x+1)>4}\\{3x≤x+5}\end{array}\right.$.

查看答案和解析>>

同步练习册答案