精英家教网 > 初中数学 > 题目详情

在△ABC中,点D、E分别在边AB、AC上,CD平分∠ACB,DE∥BC.如果AC=10,AE=4,那么BC=________.

15
分析:首先利用角平分线的性质和两直线平行,内错角相等的性质求证出△EDC是等腰三角形,然后再根据相似三角形对应边的比相等求解.
解答:解:∵CD平分∠ACB,
∴∠ECD=∠DCB,
又∵DE∥BC,
∴∠EDC=∠DCB,
∴∠EDC=∠ECD,
∴△EDC是等腰三角形.
即ED=EC=AC-AE=10-4=6.
∵DE∥BC,
∴△ADE∽△ABC,

∴BC=5×6÷2=15.
点评:本题考查的是平行线的性质以及角平分线的性质.本题关键是找出内错角,求出△DEC为等腰三角形,从而求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,点O是AC边上的一个动点,过点O作MN∥BC,交∠ACB的平分线于点E,交精英家教网∠ACB的外角平分线于点F.
(1)求证:OC=
12
EF;
(2)当点O位于AC边的什么位置时,四边形AECF是矩形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,点D,E分别在边AB,AC上,给出5个论断:①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30°;⑤CD=BE.
(1)如果论断①②③④都成立,那么论断⑤一定成立吗?答:
 

(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是
 
(只需填论断的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.
(1)如图1,当∠C=45°时,请写出图中一对相等的线段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如图2,若BD=2,BA=
3
,求AD的长及△ACD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)在△ABC中,点G是重心,若BC边上的中线为6cm,则AG=
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于(  )

查看答案和解析>>

同步练习册答案