精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴OA=OC,OB=OD,AC=BD,∠ABC=90°,

∵BE=DF,

∴OE=OF,

在△AOE和△COF中,

∴△AOE≌△COF(SAS),

∴AE=CF;


(2)解:∵OA=OC,OB=OD,AC=BD,

∴OA=OB,

∵∠AOB=∠COD=60°,

∴△AOB是等边三角形,

∴OA=AB=6,

∴AC=2OA=12,

在Rt△ABC中,BC= =6

∴矩形ABCD的面积=ABBC=6×6 =36


【解析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC= =6 ,即可得出矩形ABCD的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,…,如此作下去,则△B2015A2016B2016的顶点A2016的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 轴于A、B两点,以AB为直径的圆交 轴于C、D两点,则OC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三个小球上分别标有数字﹣2,﹣1,3,它们除数字外其余全部相同,现将它们放在一个不透明的袋子里,从袋子中随机地摸出一球,将球上的数字记录,记为m,然后放回;再随机地摸取一球,将球上的数字记录,记为n,这样确定了点(m,n).
(1)请列表或画出树状图,并根据列表或树状图写出点(m,n)所有可能的结果;
(2)求点(m,n)在函数y=﹣ 的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )

A.60 n mile
B.60 n mile
C.30 n mile
D.30 n mile

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=k1x(x≥0)与双曲线y= (x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.

(1)求k1与k2的值;
(2)求直线PC的表达式;
(3)直接写出线段AB扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.
(1)用尺规补全图形(保留作图痕迹,不写作法);
(2)求证:BC与⊙O相切;
(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:

(1)a= , b=
(2)补全频数分布直方图;
(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

同步练习册答案