精英家教网 > 初中数学 > 题目详情
5.如图所示,△ABC的外接圆⊙O的半径为2,过点C作∠ACD=∠ABC,交BA的延长线于点D,若∠ABC=45°,∠D=30°.
(1)求证:CD是⊙O的切线;
(2)求$\widehat{AB}$的长.

分析 (1)证明:连接OA、OC,得到∠AOC=2∠ABC=90°,求得∠OCA=∠OAC=45°,于是得到OC⊥CD.由切线的判定定理即可得到结论;
(2)连接OB.根据三角形的内角和得到∠ACB=∠BCD-∠ACD=105°-45°=60°,由圆周角定理得到∠AOB=2∠ACB=120°,根据弧长公式即可得到结论.

解答 (1)证明:连接OA、OC.则∠AOC=2∠ABC=90°,
∵在△AOC中,OA=OC,
∴∠OCA=∠OAC=45°,
又∵∠ACD=45°,
∴∠OCD=∠OCA+∠ACD=45°+45°=90°,
∴OC⊥CD.
即CD是⊙O的切线;
(2)解:连接OB.
∵∠ABC=45°,∠D=30°,∠ACD=∠ABC=45°,
∴在△BCD中,∠BCD=180°-∠ABC-∠D=180°-45°-30°=105°,
∴∠ACB=∠BCD-∠ACD=105°-45°=60°,
∴∠AOB=2∠ACB=120°,
∴$\widehat{AB}$的长为:$\frac{120•π•2}{180}$=$\frac{4π}{3}$.

点评 本题考查了切线的判定,等腰三角形的性质,弧长的计算,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图1,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,延长CD,过点B作BF交CD的延长线于点F,使FB=FG.
(1)判断FB与⊙O的位置关系并证明你的结论;
(2)如图2,连接BD,AC,若BD=BG,求证:AC∥BF;
(3)在(2)的条件下,若tan∠F=$\frac{3}{4}$,GD=3,求⊙O的半径及BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每件文具的利润不低于25元且不高于29元.
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(-3,4)、B(-3,0)、C(-1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.
(1)求抛物线的解析式;
(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?
(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,已知⊙O1与⊙O2交于A,B两点,点C在⊙O1上且在⊙O2外,CA,CB的延长线分别与⊙O2交于点D,E,AC=3,AD=6,⊙O1的半径为2.则点O1到DE的距离为 (  )
A.$\frac{17}{4}$B.$\frac{9}{2}$C.$\frac{19}{4}$D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知二次函数y=ax2+$\frac{3}{2}$x+c的图象与y轴交于点A(0,4),与x轴交于点B,C,点C的坐标为(8,0),连接AC、AC.
(1)请直接写出二次函数y=ax2+$\frac{3}{2}$x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2-2x-3,求这个“果圆”被y轴截得线段CD的长3+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算
(1)($\frac{1}{2}$)-2+|2$\sqrt{10}$-6|-$\frac{2}{3}$$\sqrt{90}$;
(2)解方程组:$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若a2+a=0,则2a2+2a+2016的值为2016.

查看答案和解析>>

同步练习册答案