精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠MAN=120°,AC平分∠MAN.B,D分别在射线AN,AM上.

(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.
(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

【答案】
(1)证明:∵∠MAN=120°,AC平分∠MAN,

∴∠DAC=∠BAC=60°

∵∠ABC=∠ADC=90°,

∴∠DCA=∠BCA=30°,

在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°

∴AC=2AD,AC=2AB,

∴AD+AB=AC


(2)解:结论AD+AB=AC成立.

理由如下:在AN上截取AE=AC,连接CE,

∵∠BAC=60°,

∴△CAE为等边三角形,

∴AC=CE,∠AEC=60°,

∵∠DAC=60°,

∴∠DAC=∠AEC,

∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,

∴∠ADC=∠EBC,

∴△ADC≌△EBC,

∴DC=BC,DA=BE,

∴AD+AB=AB+BE=AE,

∴AD+AB=AC


【解析】(1)由题中条件可得,∠DCA=∠BCA=30°,在直角三角形中可得AC=2AD,AC=2AB,所以AD+AB=AC.(2)在AN上截取AE=AC,连接CE,可得△CAE为等边三角形,进而可得△ADC≌△EBC,即DC=BC,DA=BE,进而结论得证.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若将二次函数yx24x+3的困象绕着点(10)旋转180°,得到新的二次函数yax2+bx+c(a≠0),那么c的值为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.

(1)AC=__cm,BC=__cm;

(2)当t为何值时,AP=PQ;

(3)当t为何值时,PQ=1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.

(1)若∠COE=20°,则∠BOD=   ;若∠COE=α,则∠BOD=   (用含α的代数式表示)

(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设一元二次方程x2﹣3x﹣1=0的两根为m,n,则mn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】枣庄乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的安全高度hm,成人的安全高度2m(计算结果精确到0.1m

1)当摆绳OAOB45°夹角时,恰为儿童的安全高度,求h的长;

2)某成人在玩秋千时,摆绳OCOB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41sin55°≈0.82cos55°≈0.57tan55°≈1.43

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣10),点B在抛物线y=ax2+ax﹣2上.

1)点A的坐标为 ,点B的坐标为

2)抛物线的关系式为

3)设(2)中抛物线的顶点为D,求DBC的面积;

4)将三角板ABC绕顶点A逆时针方向旋转90°,到达AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中是必然事件的是(  )

A.三点确定一个圆B.方程x2+20有实数根

C.圆是轴对称图形D.yax2+bx+c是二次函数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】比较大小:﹣3_____4(用”“表示).

查看答案和解析>>

同步练习册答案