精英家教网 > 初中数学 > 题目详情

如图①,在菱形ABCD中,AD=BD=2,现将△ABD沿AC方向向右平移到△△A′B′D′的位置,得到图②,则阴影部分的周长为________.

4
分析:根据两个等边△ABD,△CBD的边长均为2,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=2+2=4,即可得出答案.
解答:解:∵两个等边△ABD,△CBD的边长均为2,将△ABD沿AC方向向右平移到△A′B′D′的位置,
∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,
∴OM+MN+NR+GR+EG+OE=A′D′+CD=2+2=4.
故答案为:4.
点评:此题主要考查了菱形的性质、平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,A,E,B,D在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,AC∥DF.求证:∠C=∠F.
(2)如图2,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求线段BE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•新乡模拟)阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC,探究PG与PC的位置关系
小颖同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小颖同学的思路,探究并解决下列问题:
(1)请你写出上面问题中线段PG与PC的位置关系;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题申的其他条件不变(如图2).你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明,

查看答案和解析>>

同步练习册答案