精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一个由小正方体组成的几何体的左视图和俯视图.
(1)该几何体最少需要几块小正方体?
(2)最多可以有几块小正方体?

【答案】解:俯视图中有4个正方形,那么组合几何体的最底层有4个正方体,
(1)由左视图第二层有1个正方形可得组合几何体的第二层最少有1个正方体,
所以该几何体最少需要4+1=5块小正方体;
(2)俯视图从上边数第一行的第二层最多可有3个正方体,
所以该几何体最多需要4+3=7块小正方体.
【解析】(1)由俯视图可得最底层的几何体的个数,由左视图第二层正方形的个数可得第二层最少需要几块正方体,相加即可得到该几何体最少需要几块小正方体;
(2)由俯视图和左视图可得第二层最多需要几块小正方体,再加上最底层的正方体的个数即可得到最多可以有几块小正方体.
【考点精析】本题主要考查了由三视图判断几何体的相关知识点,需要掌握在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c图象如图,下列正确的个数为( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有两个解x1 , x2 , 当x1>x2时,x1>0,x2<0;
⑤a+b+c>0;
⑥当x>1时,y随x增大而减小.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则AK=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)已知﹣ 与xnym+n是同类项,求m、n的值;
(2)先化简后求值:( ,其中a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这几何体的小正方块有(  )

A.4个
B.5个
C.6个
D.7个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在课题学习后,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB表示窗户,且AB=2.82米,△BCD表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD的最小夹角α为18°,最大夹角β为66°,根据以上数据,计算出遮阳蓬中CD的长是(结果精确到0.1)(参考数据:sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)(  )

A.1.2米
B.1.5米
C.1.9米
D.2.5米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°已知楼房高AB约是45m , 根据以上观测数据可求观光塔的高CDm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).

(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得: 的值为常数t,则t=

查看答案和解析>>

同步练习册答案