精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则AK=

【答案】2 ﹣3
【解析】解:连接BH,如图所示:
∵四边形ABCD和四边形BEFG是正方形,
∴∠BAH=∠ABC=∠BEH=∠F=90°,
由旋转的性质得:AB=EB,∠CBE=30°,
∴∠ABE=60°,
在Rt△ABH和Rt△EBH中,

∴Rt△ABH≌△Rt△EBH(HL),
∴∠ABH=∠EBH= ∠ABE=30°,AH=EH,
∴AH=ABtan∠ABH= × =1,
∴EH=1,
∴FH= ﹣1,
在Rt△FKH中,∠FKH=30°,
∴KH=2FH=2( ﹣1),
∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3;
故答案为:2 ﹣3.

连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH= ∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).

(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +|﹣4|+(﹣1)0﹣( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是( )

A.小张去时所用的时间多于回家所用的时间
B.小张在公园锻炼了20分钟
C.小张去时的速度大于回家的速度
D.小张去时走上坡路,回家时走下坡路

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简: ÷ + ,再求当x+1与x+6互为相反数时代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个由小正方体组成的几何体的左视图和俯视图.
(1)该几何体最少需要几块小正方体?
(2)最多可以有几块小正方体?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC中,BECD是高,它们相交于O , 则图中与△BOD相似的三角形有(  )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案