精英家教网 > 初中数学 > 题目详情

【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).

(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.

【答案】
(1)

解:

由已知有:﹣ (﹣2)2+(﹣2)+c=0,

∴c=3,抛物线的解析式是:y=﹣ x2+x+3


(2)

解:方法一:

①令D(x,y),(x>0,y>0),

则E(x,0),M( ,0),由(1)知C(0,3),

连接MC、MD,

∵DE、CD与⊙O相切,

∴∠OCM=∠MCD,∠CDM=∠EDM,

∴∠CMD=90°,

∴△COM∽△MED,

=

=

又∵D点在抛物线上,满足解析式y=﹣ x2+x+3,

∴x= (1± ),

又∵x>0,

∴x= (1+ ),

∴y= (3+ ),则D点的坐标是:( (1+ (3+ )).

②假设存在满足条件的点G(a,b).

若构成的四边形是ACGF,(下图1)则G与C关于直线x=2对称,

∴G点的坐标是:(4,3);

若构成的四边形是ACFG,(下图2)则由平行四边形的性质有b=﹣3,

又∵﹣ a2+a+3=﹣3,

∴a=2±2

此时G点的坐标是:(2±2 ,﹣3)

方法二:

①连接CM,DM,

∵D为抛物线:y=﹣ x2+x+3上的一点,

∴设D(t,﹣ t2+t+3),

∴E(t,0),

∵M为OE中点,

∴M( ,0),

∵C(0,3),CD与⊙M相切,

∴∠MDC=∠EDM,∠OCM=∠MCD,

∵DE⊥x轴,

∴∠OCD+∠CDE=180°

∴∠MCD+∠MDC=90°

∴CD⊥DM,

∴KCM×KDM=﹣1,

=﹣1,∴

∴D( ).

②∵F是x轴上的动点,∴设F(t,0),

∵A(﹣2,0),C(0,3),

,∴

同理:

∴﹣ (t+2)2+t+2+3=3,∴

∴﹣ (﹣t﹣2)2﹣t﹣2+3=3,∴

∴﹣ (t﹣2)2+t﹣2+3=﹣3,t﹣2=2±2

综上所述,满足题意的点G1(2﹣2 ,﹣3),G2(2+2 ,﹣3)


【解析】(1)把A的坐标代入抛物线的解析式,即可得到关于c的方程,求的c的值,则抛物线的解析式即可求解;(2)①连接MC、MD,证明△COM∽△MED,根据相似三角形的对应边的比相等即可求解;②分四边形是ACGF和四边形是ACFG两种情况进行讨论,根据平行四边形的性质即可求解.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤SCEF=2SABE , 其中结论正确的个数为( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠BAC=60°,点E为直线AC上一点,D为直线BC上的一点,且DA=DE. 当点D在线段BC上时,如图①,易证:BD+AB=AE;
当点D在线段CB的延长线上时,如图②、图③,猜想线段BD,AB和AE之间又有怎样的数量关系?写出你的猜想,并选择一种情况给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax2+1与y= (a≠0)在同一平面直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).

(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣3.14)0+(﹣1)2015+|1﹣ |﹣3tan30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c图象如图,下列正确的个数为( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有两个解x1 , x2 , 当x1>x2时,x1>0,x2<0;
⑤a+b+c>0;
⑥当x>1时,y随x增大而减小.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则AK=

查看答案和解析>>

同步练习册答案