【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).
(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.
【答案】
(1)
解:
由已知有:﹣ (﹣2)2+(﹣2)+c=0,
∴c=3,抛物线的解析式是:y=﹣ x2+x+3
(2)
解:方法一:
①令D(x,y),(x>0,y>0),
则E(x,0),M( ,0),由(1)知C(0,3),
连接MC、MD,
∵DE、CD与⊙O相切,
∴∠OCM=∠MCD,∠CDM=∠EDM,
∴∠CMD=90°,
∴△COM∽△MED,
∴ = ,
∴ = ,
又∵D点在抛物线上,满足解析式y=﹣ x2+x+3,
∴x= (1± ),
又∵x>0,
∴x= (1+ ),
∴y= (3+ ),则D点的坐标是:( (1+ , (3+ )).
②假设存在满足条件的点G(a,b).
若构成的四边形是ACGF,(下图1)则G与C关于直线x=2对称,
∴G点的坐标是:(4,3);
若构成的四边形是ACFG,(下图2)则由平行四边形的性质有b=﹣3,
又∵﹣ a2+a+3=﹣3,
∴a=2±2 ,
此时G点的坐标是:(2±2 ,﹣3)
方法二:
①连接CM,DM,
∵D为抛物线:y=﹣ x2+x+3上的一点,
∴设D(t,﹣ t2+t+3),
∴E(t,0),
∵M为OE中点,
∴M( ,0),
∵C(0,3),CD与⊙M相切,
∴∠MDC=∠EDM,∠OCM=∠MCD,
∵DE⊥x轴,
∴∠OCD+∠CDE=180°
∴∠MCD+∠MDC=90°
∴CD⊥DM,
∴KCM×KDM=﹣1,
∴ =﹣1,∴ ,
∴D( , ).
②∵F是x轴上的动点,∴设F(t,0),
∵A(﹣2,0),C(0,3),
∴ ,∴ ,
同理: 或 ,
∴﹣ (t+2)2+t+2+3=3,∴ ,
∴﹣ (﹣t﹣2)2﹣t﹣2+3=3,∴ ,
∴﹣ (t﹣2)2+t﹣2+3=﹣3,t﹣2=2±2 ,
综上所述,满足题意的点G1(2﹣2 ,﹣3),G2(2+2 ,﹣3)
【解析】(1)把A的坐标代入抛物线的解析式,即可得到关于c的方程,求的c的值,则抛物线的解析式即可求解;(2)①连接MC、MD,证明△COM∽△MED,根据相似三角形的对应边的比相等即可求解;②分四边形是ACGF和四边形是ACFG两种情况进行讨论,根据平行四边形的性质即可求解.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2 , B2 , C2 , 请画出△A2B2C2;
(3)则S△A1B1C1:S△A2B2C2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).
(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列叙述中:
①一组对边相等的四边形是平行四边形;
②函数y= 中,y随x的增大而减小;
③有一组邻边相等的平行四边形是菱形;
④有不可能事件A发生的概率为0.0001.
正确的叙述有( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.
(1)若AB=4,求△DNF的周长及sin∠DAF的值;
(2)求证:2ADNF=DEDM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )
A.1
B.3﹣
C. ﹣1
D.4﹣2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com