精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为

【答案】
【解析】解:连接AE.
∵DE是线段AC的垂直平分线,
∴AE=EC.
设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,
∵在直角△ABE中,AE2=AB2+BE2
∴x2=52+(12﹣x)2
解得:x=
即EC=
∵AD∥BC,
∴∠D=∠OEC,
在△AOD和△COE中,

∴△AOD≌△COE,
∴AD=EC=
故答案是:
【考点精析】本题主要考查了线段垂直平分线的性质和勾股定理的概念的相关知识点,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某运动员在一场篮球比赛中的技术统计如表所示:

技术

上场时间(分钟)

出手投篮(次)

投中
(次)

罚球得分

篮板
(个)

助攻(次)

个人总得分

数据

46

66

22

10

11

8

60

注:表中出手投篮次数和投中次数均不包括罚球.
根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…
(1)观察以上图形并完成下表:

图形名称

基本图形的个数

菱形的个数

图①

1

1

图②

2

3

图③

3

7

图④

4

猜想:在图(n)中,菱形的个数为(用含有n(n≥3)的代数式表示);
(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1 , 1),则x1=;第2017个基本图形的中心O2017的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2
(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.

(1)探索发现
当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);
(2)延伸拓展
当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;
(3)应用推广
如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺规画圆O,使圆O过A、D两点,且圆心O在边AC上.(保留作图痕迹,不写作法)
(2)求证:BC与圆O相切;
(3)设圆O交AB于点E,若AE=2,CD=2BD.求线段BE的长和弧DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=﹣ x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).

(1)求此抛物线的解析式;
(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;
②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案