【题目】如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.
(1)探索发现
当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);
(2)延伸拓展
当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;
(3)应用推广
如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.
【答案】
(1)
解:PB⊥AK,PB=PK+AK;
理由:如图2中,
∵点P在MN上,根据对称性易得∠PBC=∠2且PB=PC,
又∠ABK=∠CBK=45°,
在△BKA和△BKC中,
∴△ABK≌△CBK,
∴∠2=∠3且AK=CK,
∴∠PBC=∠3.
又∠PBC+∠4=90°,
∴∠3+∠4=90°,
即PB⊥AK.
∴PB=PC=PK+CK=PK+AK.
(2)
以上两个结论仍然成立,
理由如下:如图1中,
∵点P在MN上,根据对称性易得∠PBC=∠2且PB=PC,
又∠ABK=∠CBK=45°,
在△BKA和△BKC中,
∴△ABK≌△CBK,
∴∠2=∠3且AK=CK,
∴∠PBC=∠3.
又∠PBC+∠4=90°,
∴∠3+∠4=90°,
即PB⊥AK.
∴PB=PC=PK+CK=PK+AK.
(3)
如图3中,过点B作AD的平行线交PK延长线与点C,连接CD.
∵FD∥BD,
∴△FDK∽△CBK.
又DK:BK=1:3,
∴FD:BC=1:3.
∵FD:AD=1:3,
∴BC=AD.
∵BC∥AD且AB⊥AD且AB=AD,
∴四边形ABCD为正方形.
∵PB=PK+AK,
即(PE+BE)=(PF+FK)+AK,又PE=PF,
∴BE=FK+AK.
在Rt△EAB中,∵AE=1,AB=3,
∴BE= = .
∵AG⊥BE(上一问结论),
∵Rt△AGE∽Rt△BGA,且相似比为1:3,
设EG=t,AG=3t,BG=9t,
∴BE=10t= ,
∴ .
∴四边形EFKG的周长=EF+FK+GK+EG=EF+(FK+AK)﹣AG+EG
=EF+BE﹣AG+EG=1+10t﹣3t+t=1+8t= .
过点K作AD垂线,垂足为H,
∵HK∥AB且DK:DB=1:4,
∴KH= AB= ,
∴S四边形EFGH=S△AFK﹣S△AEG= AFKH﹣ AGEG= 2 ﹣ 3tt= .
【解析】●探索发现 PB⊥AK,PB=PK+AK,只要证明∠3=∠4=90°即可证明PB⊥AK,由△ABK≌△CBK,结合PB=PC即可解决问题.
●延伸拓展 以上两个结论仍然成立,证明方法类似上面.
●应用推广 如图3中,过点B作AD的平行线交PK延长线与点C,连接CD,利用上面结论结合条件即可解决问题.
【考点精析】解答此题的关键在于理解相似三角形的应用的相关知识,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.
科目:初中数学 来源: 题型:
【题目】已知如图,点O为△ABD的外心,点C为直径BD下方弧BCD上一点,且不与点B,D重合,∠ACB=∠ABD=45°,则下列对AC,BC,CD之间的数量关系判断正确的是( )
A.AC=BC+CD
B. AC=BC+CD
C. AC=BC+CD
D.2AC=BC+CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论: ①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;
③EC平分∠DCH;④当点H与点A重合时,EF=2
以上结论中,你认为正确的有 . (填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)一共调查了多少名学生;
(2)请补全条形统计图;
(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发20分钟后与乙相遇,…,请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当15<y<25时,求t的取值范围;
(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中结论正确的个数为( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com