【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)一共调查了多少名学生;
(2)请补全条形统计图;
(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.
【答案】
(1)解:调查的总人数是:10÷20%=50(人)
(2)解:参加户外活动时间是1.5小时的人数是:50﹣10﹣20﹣8=12(人);
补全条形统计如图:
(3)解:该校户外活动的平均时间是: (小时).
∴该校全体学生每天参与户外互动所用的总时间:6000×1.18=7080(小时)
【解析】(1)根据活动时间是0.5小时的人数是10人,所占的百分比是20%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求解;(3)利用加权平均数公式求得参加课外活动的平均时间,然后乘以总人数6000即可求得
【考点精析】关于本题考查的扇形统计图和条形统计图,需要了解能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4).
(1)求直线AB的表达式;
(2)若直线y=﹣2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式kx+b>﹣2x﹣4的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )
A.正比例函数
B.一次函数
C.反比例函数
D.二次函数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.
(1)探索发现
当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);
(2)延伸拓展
当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;
(3)应用推广
如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.
(1)探索发现
当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);
(2)延伸拓展
当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;
(3)应用推广
如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=ax2﹣4ax+3(a≠0)与y轴交于点A,A、B两点关于对称轴对称,直线OB分别与抛物线的对称轴相交于点C.
(1)直接写出对称轴及B点的坐标;
(2)已知直线y2=bx﹣4b+3(b≠0)与抛物线的对称轴相交于点D. ①判断直线y2=bx﹣4b+3(b≠0)是否经过点B,并说明理由;
②若△BDC的面积为1,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列叙述中:
①一组对边相等的四边形是平行四边形;
②函数y= 中,y随x的增大而减小;
③有一组邻边相等的平行四边形是菱形;
④有不可能事件A发生的概率为0.0001.
正确的叙述有( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com