【题目】 (2016贵州贵阳第18题)(10分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
【答案】(1)证明见解析;(2)△CEF是直角三角形.
【解析】
试题分析:(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;
(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.
试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.
在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(SAS).
(2)解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.
科目:初中数学 来源: 题型:
【题目】出租车司机小王某天上午的营运全是在东西走向的光明大道上进行的,如果规定向东为正,向西为负,他这天上午的行驶记录(单位:km)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.若出租车耗油量为0.1 L/km,则这天上午小王的出租车共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);
(2)在(1)的图形中,找出两条相等的线段,并予以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
(1)整式2xy﹣8x2y+8x3y因式分解的结果是2xy(1﹣4x+4x2);
(2)要使y=有意义,则x应该满足0<x≤3;
(3)“x的2倍与5的和”用代数式表示是一次式;
(4)地球上的陆地面积约为149000000平方千米,用科学记数法表示为1.49×108平方千米.
A.(1)(4)
B.(1)(2)
C.(2)(3)
D.(3)(4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 (2016内蒙古包头第11题)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com