【题目】如图,在Rt△ABC中,∠C=90°AB=8cm,cos∠ABC=,点D在边AC上,且CD=cm,动点P从点A开始沿边AB向点B以1cm/s的速度移动,当点P到达B点即停止运动.设运动时间为t(s).解答下列问题:
(1)M、N分别是DP、BP的中点,连接MN.
①分别求BC、MN的值;
②求在点P从点A匀速运动到点B的过程中线段MN所扫过区域的面积;
(2)在点P运动过程中,是否存在某一时刻t,使BD平分∠CDP?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)①BC=;MN=;②线段MN所扫过区域为平行四边形,面积为6;(3)
【解析】试题分析:(1)①根据已知的AB=8和锐角三角形函数cos∠ABC=,可求出BC的长,根据勾股定理求出BD的长,然后根据三角形的中位线的性质可求解;
②由于D点不动,所以BD的长不变,因此MN的长不变,由此可知扫过的区域为平行四边形,然后求解即可.
(2)如图,过D作DH⊥AB于H,BE⊥PD于E,根据角平分线的性质和三角形的面积的不变性可求解.
试题解析:(1)①BC=, MN=;
②线段MN所扫过区域为平行四边形,
面积为6;
(2)存在,
如图,过D作DH⊥AB于H,BE⊥PD于E,
∵BD平分∠CDP,
∴∠PDB=∠CDB,
∴BE = BC =,
∴DC=DE=,
∵AD=AC-CD==5
∴DH=3,
∵BPDH=BEPD,
∴ PD=5﹣t,
∴PE=﹣t,
∵BP2=PE2+BE2,
∴(8﹣t)2=(﹣t)2+()2,(解此方程需要注意运算技巧,否则特别繁琐,影响运算结果与考试心情)解得:t=16(不合题意,舍去),t =,
∴当t=时,BD平分∠CDP.
科目:初中数学 来源: 题型:
【题目】如图(1)所示,∠AOB、∠COD都是直角.
(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.
(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+m(m>0)的图像与x轴、y轴分别交于点A、B,点C在线段OA上,点C的横坐标为n,点D在线段AB上,且AD=2BD,将△ACD绕点D旋转180°后得到△A1C1D.
(1)若点C1恰好落在y轴上,试求的值;
(2)当n=4时,若△A1C1D被y轴分得两部分图形的面积比为3:5,求该一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B.带②去
C.带③去
D.带①和②去
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于 EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:△AEF≌△DCE;
(2)若CD=1,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com