精英家教网 > 初中数学 > 题目详情

如图所示,已知直线y=-2x+12分别与y轴、x轴交于A、B两点,点M在y轴上,以点M为圆心的⊙M与直线AB相切于点D,连结MD.

(1)求证:△ADM∽△AOB;

(2)如果⊙M的半径为2,请求出点M的坐标,并求出以(-)为顶点,且过点M的抛物线的解析式;

(3)在(2)的条件下,试问:在此抛物线上是否存在点P,使得以P、A、M三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.

答案:
解析:

  (1)易证

  (2)y=-2x2-10x+2

  (3)存在满足条件的点P.为P(-5,2)或P(-4,10).


提示:

由两三角形相似,可求六种可能的点P,即P1(-20,12),P2(-5,12),P3(-20,2),P4(-5,2),P5(-4,10),P6(-4,4),其中只有P4(-5,2)和P5(-4,10)在抛物线上


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图所示,已知直线a∥b,被直线L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线AB过点C(1,2),且与x轴、y轴分别交于点A、B,CD⊥x轴于D,CE⊥y轴于E,CF交y轴于G,交x轴于F.(F在原点O的左侧)
(1)当直线AB的位置正好使得△ACD≌△CBE时,求A点的坐标及直线AB的解析式.
(2)若S四边形ODCE=S△CDF,当直线AB的位置正好使得FC⊥AB时,求A点的坐标及BC的长.
(3)在(2)成立的前提下,将△FOG延y轴对折得△F′O′G′(对折后F、O、G的对应点分别为F′、O′、G′),将△F′O′G′沿x轴正方向精英家教网平移,设平移过程中△F′O′G′与四边形ODCE重叠部分面积为y,OO′的长为x(0≤x≤1),求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知直线y=kx-2经过M点,求此直线与x轴交点坐标和直线与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:已知直线y=
1
2
x
与双曲线y=
k
x
(k>0)
交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)过A点作AC⊥x轴于C点,求△AOC的面积.

查看答案和解析>>

同步练习册答案