【题目】作图与探究:
如图,△ABC中,AB=AC.
(1)作图:①画线段BC的垂直平分线l,设l与BC边交于点H;
②在射线HA上画点D,使AD=AB,连接BD. (不写作法,保留作图痕迹)
(2)探究:∠D与∠C有怎样的数量关系? 并证明你的结论.
【答案】(1)①画垂直平分线见解析;②画点D见解析;(2)∠C+2∠D=90°. 证明见解析.
【解析】
(1)①根据以点B和点C为圆心,以大于BC的一半为半径画弧,过两弧的交点作直线l,则l即为所求;②以点A为圆心,AB长为半径画弧,交射线HA于点D,点D为所求;
(2)由AB=AC=AD,则∠ABC=∠C,∠ABD=∠D,利用余角的性质,即可得到2∠D+∠C=90°.
解:(1)①如图所示,直线l为所求;
②如图所示,点D为所求;
(2)由(1)可知,直线l为BC的垂直平分线,
∴AB=AC,
∴∠ABC=∠C,
∵AB=AD,
∴∠ABD=∠D,
∵∠AHB=90°,
∴∠D+∠ABD+∠ABC=90°,
∴2∠D+∠C=90°.
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越大;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.其中正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的高为AD.△A'B'C'的高为A'D',且A'D'=AD.现有①②③三个条件:
①∠B=∠B',∠C=∠C';
②∠B=∠B',AB=A'B';
③BC=B'C',AB=A'B'.
分别添加以上三个条件中的一个,如果能判定△ABC≌△A'B'C',写出序号,并画图证明;如果不能判定△ABC≌△A'B'C',写出序号,并画出相应的反例图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下两题:
变式1: 等腰三角形中,∠A=100°,求的度数.
变式2: 等腰三角形中,∠A= 45° ,求的度数.
(1)请你解答以上两道变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当只有一个度数时,请你探索的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com