精英家教网 > 初中数学 > 题目详情

【题目】已知x2+(a+3)x+a+1=0是关于x的一元二次方程.

(1)求证:方程总有两个不相等的实数根;

(2)若方程的两个实数根为x1 ,x2x12+x22=10,求实数a的值.

【答案】1证明见解析;2a的值为﹣2+ 或﹣2

【解析】【试题分析】

(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可. △=a+32﹣4a+1=a2+6a+9﹣4a﹣4=a2+2a+5=a+12+4>0,从而得证

2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可. x12+x22=x1+x22﹣2x1x2=10a+32﹣2a+1=10解得a1=﹣2+a2=﹣2﹣.

【试题解析】

1)证明:△=a+32﹣4a+1

=a2+6a+9﹣4a﹣4

=a2+2a+5

=a+12+4

a+12≥0

a+12+40,即0

方程总有两个不相等的实数根;

2)根据题意得x1+x2=﹣a+3),x1x2=a+1

∵x12+x22=10

x1+x22﹣2x1x2=10

a+32﹣2a+1=10

整理得a2+4a﹣3=0,解得a1=﹣2+a2=﹣2﹣

a的值为﹣2+或﹣2﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,∠BAC=90°AB=AC,分别过点BC做经过点A的直线的垂线BDCE,若BD=14cmCE=3cm,则DE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a0)、二次函数y=ax2+bx和反比例函数y=(k0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是(  )

A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=90°AD//BCAD=16BC=21CD=13

1)求直线ADBC之间的距离;

2)动点P从点B出发,沿射线BC以每秒2个单位长度的速度运动,动点Q从点A出发,在线段AD上以每秒1个单位长度的速度运动,点PQ同时出发,当点Q运动到点D时,两点同时停止运动,设运动时间为t秒.试求当t为何值时,以PQDC为顶点的四边形为平行四边形?

3)在(2)的条件下,是否存在点P,使PQD为等腰三角形?若存在,请直接写出相应的t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,边的垂直平分线于点边的垂直平分线于点相交于点,联结,若的周长为的周长为

1)求线段的长;

2)联结,求线段的长;

3)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2mx+4m﹣8,

1)当x≤2时,函数值yx的增大而减小,求m的取值范围.

2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMNMN两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.

3)若抛物线y=x2﹣2mx+4m﹣8x轴交点的横坐标均为整数,求整数m的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC2米,两拉索底端距离AD20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.

(1)这部分男生有多少人?其中成绩合格的有多少人?

(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?

(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.

(1)写出点D的坐标

(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.

①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;

②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;

③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.

查看答案和解析>>

同步练习册答案