精英家教网 > 初中数学 > 题目详情

【题目】如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:∵AE=BF=CG,且等边△ABC的边长为2,
∴BE=CF=AG=2﹣x;
∴△AEG≌△BEF≌△CFG.
在△AEG中,AE=x,AG=2﹣x,
∵SAEG= AE×AG×sinA= x(2﹣x);
∴y=SABC﹣3SAEG= ﹣3× x(2﹣x)= x2 x+1).
∴其图象为二次函数,且开口向上.
故选C.
根据题意可知△AEG≌△BEF≌△CFG三个三角形全等,且在△AEG中,AE=x,AG=2﹣x;可得△AEG的面积y与x的关系;进而可判断得则y关于x的函数的图象的大致形状.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥ACAB于点E,若AB=8,则DE=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数的图象经过点E,G两点,则k的值为 ______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:

(1)A型自行车去年每辆售价多少元?

(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

门头沟盛产名特果品,东山的京白梨,灵水的核桃,柏峪的扁杏仁,龙泉雾的香白杏,火村红杏,太子墓的红富士苹果,陇驾庄盖柿都是上等的干鲜果品,有的曾为皇宫供品,至今在国内享有盛名.秋收季节,某公司打算到门头沟果园基地购买一批优质苹果.果园基地对购买量在1000千克(含1000千克)以上的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.

(1)公司购买多少千克苹果时,选择两种购买方案的付款费用相同;

(2)如果公司打算购买3000千克苹果,选择哪种方案付款最少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于反比例函数y的下列说法正确的是(

该函数的图象在第二、四象限;

Ax1y1)、Bx2y2)两点在该函数图象上,若x1x2,则y1y2

x2时,则y>-2

若反比例函数y与一次函数yxb的图象无交点,则b的范围是-4b4.

A. B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程x2-(2k+1)x+4k-2=0

(1)求证:不论k取何值,这个方程总有实数根

(2)若等腰ABC一边长a=4,另两边长b,c恰好是这个方程的两根,求ABC的周长.

查看答案和解析>>

同步练习册答案